Solveeit Logo

Question

Question: Solve \({{\sin }^{-1}}\dfrac{5}{x}+{{\sin }^{-1}}\dfrac{12}{x}=\dfrac{\pi }{2}\)...

Solve sin15x+sin112x=π2{{\sin }^{-1}}\dfrac{5}{x}+{{\sin }^{-1}}\dfrac{12}{x}=\dfrac{\pi }{2}

Explanation

Solution

In the question, we are given an equation that involves inverse trigonometric functions. First, we will learn what is inverse trigonometric functions, how it is represented and some important properties of that. Then we will take one consideration and we will use this in our equation to get our required answer.

Complete answer:
In the question we are given an equation which has inverse trigonometric functions.
Inverse trigonometric functions:
Inverse trigonometric functions are the inverse functions of trigonometric functions
Inverse function of sinx\sin x is represented as sin1x{{\sin }^{-1}}x
Inverse function of cosx\cos x is represented as cos1x{{\cos }^{-1}}x
Inverse function of tanx\tan x is represented as tan1x{{\tan }^{-1}}x
Inverse function of cosecx\text{cosec}x is represented as cosec1x\text{cose}{{\text{c}}^{-1}}x
Inverse function of secx\sec x is represented as sec1x{{\sec }^{-1}}x
Inverse function of tanx\tan x is represented as tan1x{{\tan }^{-1}}x
The most important properties of inverse trigonometric functions are
sin(sin1x)=x\sin \left( {{\sin }^{-1}}x \right)=x And sin1(sinx)=x{{\sin }^{-1}}\left( \sin x \right)=x
cos(cos1x)=x\cos \left( {{\cos }^{-1}}x \right)=x And cos1(cosx)=x{{\cos }^{-1}}\left( \cos x \right)=x
tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x And tan1(tanx)=x{{\tan }^{-1}}\left( \tan x \right)=x
We can generalize this properties to all trigonometric functions.
Now we will proceed to our question
Our given equations is
sin15x+sin112x=π2{{\sin }^{-1}}\dfrac{5}{x}+{{\sin }^{-1}}\dfrac{12}{x}=\dfrac{\pi }{2}
Let us consider α=sin112x\alpha ={{\sin }^{-1}}\dfrac{12}{x}
We can also write it as
sinα=12x\sin \alpha =\dfrac{12}{x}
As we know sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
From this trigonometry identity we can say that
cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta
Now we will use this in our equation
sinα=12x\sin \alpha =\dfrac{12}{x}
Using trigonometry identity and this value we will find value of cosα\cos \alpha
So,
cos2α=1sin2α{{\cos }^{2}}\alpha =1-{{\sin }^{2}}\alpha
Substituting sinα=12x\sin \alpha =\dfrac{12}{x}
cos2α=1sin2α{{\cos }^{2}}\alpha =1-{{\sin }^{2}}\alpha
cos2α=1(12x)2\Rightarrow {{\cos }^{2}}\alpha =1-{{\left( \dfrac{12}{x} \right)}^{2}}
Now we will simplify this
cos2α=1(12x)2{{\cos }^{2}}\alpha =1-{{\left( \dfrac{12}{x} \right)}^{2}}
cos2α=1(12)2x2\Rightarrow {{\cos }^{2}}\alpha =1-\dfrac{{{\left( 12 \right)}^{2}}}{{{x}^{2}}}
cos2α=1144x2\Rightarrow {{\cos }^{2}}\alpha =1-\dfrac{144}{{{x}^{2}}}
Taking LCM on right hand side
cos2α=x2144x2\Rightarrow {{\cos }^{2}}\alpha =\dfrac{{{x}^{2}}-144}{{{x}^{2}}}
Now we will take square root both sides
cos2α=x2144x2\sqrt{{{\cos }^{2}}\alpha }=\sqrt{\dfrac{{{x}^{2}}-144}{{{x}^{2}}}}
Solving this we will get
cosα=x2144x{{\cos }^{{}}}\alpha =\dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}}
We can also write it as
α=cos1(x2144x)\alpha ={{\cos }^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}} \right)
We have taken α=sin112x\alpha ={{\sin }^{-1}}\dfrac{12}{x}
Now we can write it as
α=sin112x=cos1(x2144x)\alpha ={{\sin }^{-1}}\dfrac{12}{x}={{\cos }^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}} \right)
Now we will use this in our given equation
sin15x+sin112x=π2{{\sin }^{-1}}\dfrac{5}{x}+{{\sin }^{-1}}\dfrac{12}{x}=\dfrac{\pi }{2}
sin15x+cos1(x2144x)=π2{{\sin }^{-1}}\dfrac{5}{x}+{{\cos }^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}} \right)=\dfrac{\pi }{2}
We can write it as
sin15x=π2cos1(x2144x){{\sin }^{-1}}\dfrac{5}{x}=\dfrac{\pi }{2}-{{\cos }^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}} \right)
Taking sin\sin both side we will get
sin(sin15x)=sin(π2cos1(x2144x))\sin \left( {{\sin }^{-1}}\dfrac{5}{x} \right)=\sin \left( \dfrac{\pi }{2}-{{\cos }^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}} \right) \right)
Solving this we will get
5x=sin(π2cos1(x2144x))\dfrac{5}{x}=\sin \left( \dfrac{\pi }{2}-{{\cos }^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}} \right) \right)
As we know sin(π2θ)=cosθ\sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta
Using this we will get
5x=cos(cos1(x2144x))\dfrac{5}{x}=\cos \left( {{\cos }^{-1}}\left( \dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}} \right) \right)
Simplifying this we will get
5x=(x2144x)\dfrac{5}{x}=\left( \dfrac{\sqrt{{{x}^{2}}-144}}{{{x}^{{}}}} \right)
Now we will solve this
By Cross multiplying we get
5x=(x2144)x5x=\left( \sqrt{{{x}^{2}}-144} \right)x
We can write it as
5=(x2144)5=\left( \sqrt{{{x}^{2}}-144} \right)
Squaring both sides we will get
(5)2=(x2144)2{{(5)}^{2}}={{\left( \sqrt{{{x}^{2}}-144} \right)}^{2}}
25=x2144\Rightarrow 25={{x}^{2}}-144
Transposing 144144 to left hand side
25+144=x225+144={{x}^{2}}
Or
x2=25+144 x2=169 \begin{aligned} & {{x}^{2}}=25+144 \\\ & \Rightarrow {{x}^{2}}=169 \\\ \end{aligned}
Now we will take square root both sides
x2=169\sqrt{{{x}^{2}}}=\sqrt{169}
We will get
x=±13x=\pm 13
x=±13\therefore x=\pm 13 Is our required answer.
Hence x=±13x=\pm 13is solution of sin15x+sin112x=π2{{\sin }^{-1}}\dfrac{5}{x}+{{\sin }^{-1}}\dfrac{12}{x}=\dfrac{\pi }{2}

Note:
In mathematical functions we give input and get output. Input values are considered as the domain of the function and output values are considered as range of a function. In inverse functions domain of a function becomes range of an inverse function and range of function becomes domain of an inverse function.