Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

Solve sin12x+cos12x+2tan1x=π{{\sin }^{-1}}\,2x+{{\cos }^{-1}}\,2x+2\,{{\tan }^{-1}}\,x=\pi

A

11

B

00

C

1-1

D

1/21/\sqrt{2}

Answer

11

Explanation

Solution

We have, sin12x+cos12x+2tan1x=x{{\sin }^{-1}}\,2x+{{\cos }^{-1}}2x+2{{\tan }^{-1}}x=x \Rightarrow π2+2tan1x=π(sin1x+cos1x=π2)\frac{\pi }{2}+2{{\tan }^{-1}}x=\pi \,\left( \because \,\,\,{{\sin }^{-1}}x+{{\cos }^{-1}}x=\frac{\pi }{2} \right) \Rightarrow 2tan1x=π1π2=π22{{\tan }^{-1}}x=\frac{\pi }{1}-\frac{\pi }{2}=\frac{\pi }{2} \Rightarrow tan1x=π4{{\tan }^{-1}}x=\frac{\pi }{4} \Rightarrow x=tanπ4x=\tan \frac{\pi }{4} \Rightarrow x=1x=1