Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Solve sin1(1x)2sin1x=π2sin^{-1}(1-x)-2sin^{-1}x=\frac {\pi}{2}, then x is equal to

A

0,120, \frac 12

B

1,121,\frac 12

C

00

D

12\frac 12

Answer

00

Explanation

Solution

sin-1(1-x) - 2sin-1x = π2\frac {\pi}{2}
    \implies-2 sin-1x = π2\frac {\pi}{2} - sin-1(1-x)
    \implies-2 sin-1x = cos-1(1-x) .………. (1)
Let sin-1x = θ    \impliessinθ = x    \impliescosθ = 1x2\sqrt {1-x^2}.
θ = cos-1(1x2)(\sqrt {1-x^2})
Therefore, from equation (1), we have;
-2 cos-1(1x2)(\sqrt {1-x^2}) = cos-1(1-x)
Put x = sin y. Then, we have:
-2 cos-1(1sin2y)(\sqrt {1-sin^2 y}) = cos-1(1-sin y)
    \implies-2 cos-1(cos y) = cos-1(1-sin y)
    \implies-2y = cos-1(1-sin y)
    \implies1-siny = cos(-2y) = cos 2y
    \implies1-sin y = 1-2sin2y
    \implies2sin2y - sin y = 0
    \impliessin y (2 sin y-1) = 0 siny = 0 or 12\frac 12
therefore x = 0 or 12\frac 12
But, when x = 12\frac 12 , it can be observed that:
L.H.S = sin-1(1-12\frac 12) - 2 sin-1 12\frac 12
= sin-1(12)(\frac 12)-2 sin-1(12)(\frac 12)
= - sin-112\frac 12
= π6-\frac {\pi}{6}π2-\frac {\pi}{2}
≠ R.H.S
so x = 12\frac 12 is not the solution of the given equation. Thus, x = 0.

Hence, the correct answer is (C): 00