Question
Mathematics Question on Inverse Trigonometric Functions
Solve sin−1(1−x)−2sin−1x=2π, then x is equal to
0,21
1,21
0
21
0
Solution
sin-1(1-x) - 2sin-1x = 2π
⟹-2 sin-1x = 2π - sin-1(1-x)
⟹-2 sin-1x = cos-1(1-x) .………. (1)
Let sin-1x = θ⟹sinθ = x⟹cosθ = 1−x2.
θ = cos-1(1−x2)
Therefore, from equation (1), we have;
-2 cos-1(1−x2) = cos-1(1-x)
Put x = sin y. Then, we have:
-2 cos-1(1−sin2y) = cos-1(1-sin y)
⟹-2 cos-1(cos y) = cos-1(1-sin y)
⟹-2y = cos-1(1-sin y)
⟹1-siny = cos(-2y) = cos 2y
⟹1-sin y = 1-2sin2y
⟹2sin2y - sin y = 0
⟹sin y (2 sin y-1) = 0 siny = 0 or 21
therefore x = 0 or 21
But, when x = 21 , it can be observed that:
L.H.S = sin-1(1-21) - 2 sin-1 21
= sin-1(21)-2 sin-1(21)
= - sin-121
= −6π ≠ −2π
≠ R.H.S
so x = 21 is not the solution of the given equation. Thus, x = 0.
Hence, the correct answer is (C): 0