Solveeit Logo

Question

Question: Solve sec x+ tan x = cot 4...

Solve sec x+ tan x = cot 4

Answer

x = \frac{\pi}{2}-8+2n\pi or x=-\frac{\pi}{2}+2n\pi, n\in\mathbb{Z}

Explanation

Solution

We wish to solve

secx+tanx=cot4.\sec x+\tan x=\cot 4.

A step‐by‐step solution is given below.

Step 1. Express in terms of sine and cosine

Recall that

secx+tanx=1cosx+sinxcosx=1+sinxcosx.\sec x+\tan x=\frac{1}{\cos x}+\frac{\sin x}{\cos x}=\frac{1+\sin x}{\cos x}.

Thus the equation becomes

1+sinxcosx=cot4=cos4sin4.\frac{1+\sin x}{\cos x}=\cot 4=\frac{\cos 4}{\sin 4}.

Step 2. Cross Multiply

Assuming cosx0\cos x\neq 0 and sin40\sin 4\neq 0, cross multiply:

(1+sinx)sin4=cos4cosx.(1+\sin x)\sin4=\cos4\,\cos x.

Step 3. Use the Tangent Half‐Angle Substitution

A neat way to simplify 1+sinxcosx\frac{1+\sin x}{\cos x} is to use the substitution

t=tanx2.t=\tan\frac{x}{2}.

Recall the identities:

sinx=2t1+t2,cosx=1t21+t2.\sin x=\frac{2t}{1+t^2},\quad \cos x=\frac{1-t^2}{1+t^2}.

Then

1+sinxcosx=1+2t1+t21t21+t2=(1+t2)+2t1t2=(1+t)21t2.\frac{1+\sin x}{\cos x}=\frac{1+\frac{2t}{1+t^2}}{\frac{1-t^2}{1+t^2}} =\frac{(1+t^2)+2t}{1-t^2} =\frac{(1+t)^2}{1-t^2}.

Thus the equation becomes

(1+t)21t2=cot4=cos4sin4.\frac{(1+t)^2}{1-t^2}=\cot 4=\frac{\cos4}{\sin4}.

Step 4. Solve for tt

Write the equation as:

(1+t)2=cos4sin4(1t2).(1+t)^2 = \frac{\cos 4}{\sin 4}(1-t^2).

Let

A=cos4sin4(note A>0 if 4 is in radians with sin40).A=\frac{\cos4}{\sin4} \quad (\text{note } A>0 \text{ if } 4 \text{ is in radians with } \sin4\neq0).

Then

(1+t)2=A(1t2).(1+t)^2=A(1-t^2).

Expand the left‐hand side:

1+2t+t2=AAt2.1+2t+t^2=A-A\,t^2.

Rearrange to obtain:

(1+A)t2+2t+(1A)=0.(1+A)t^2+2t+(1-A)=0.

This is a quadratic in tt. The solution is given by

t=2±44(1+A)(1A)2(1+A).t=\frac{-2\pm\sqrt{4-4(1+A)(1-A)}}{2(1+A)}.

Notice that

(1+A)(1A)=1A2,(1+A)(1-A)=1-A^2,

so the discriminant becomes:

44(1A2)=4A2.4-4(1-A^2)=4A^2.

Thus,

t=2±2A2(1+A)=1±A1+A.t=\frac{-2\pm 2A}{2(1+A)} =\frac{-1\pm A}{1+A}.

This gives two cases:

  1. Using the “+” sign: t=1+A1+A.t=\frac{-1+A}{1+A}.
  2. Using the “–” sign: t=1A1+A=1.t=\frac{-1-A}{1+A}=-1.

Since t=tanx2t=\tan\frac{x}{2}, we now have:

  • Case 1:

    tanx2=A1A+1,A=cot4.\tan\frac{x}{2}=\frac{A-1}{A+1},\quad A=\cot4.

    Notice that

    A1A+1=cot41cot4+1.\frac{A-1}{A+1}=\frac{\cot4-1}{\cot4+1}.

    Write cot4=cos4sin4\cot4=\frac{\cos4}{\sin4} so that

    cot41cot4+1=cos4sin41cos4sin4+1=cos4sin4cos4+sin4.\frac{\cot4-1}{\cot4+1} =\frac{\frac{\cos4}{\sin4}-1}{\frac{\cos4}{\sin4}+1} =\frac{\cos4-\sin4}{\cos4+\sin4}.

    Now, recalling that

    cos4sin4cos4+sin4=1tan41+tan4=tan(π44),\frac{\cos4-\sin4}{\cos4+\sin4}=\frac{1-\tan4}{1+\tan4}=\tan\left(\frac{\pi}{4}-4\right),

    we obtain

    tanx2=tan(π44).\tan\frac{x}{2}=\tan\left(\frac{\pi}{4}-4\right).

    Hence,

    x2=π44+nπ,nZ,\frac{x}{2}=\frac{\pi}{4}-4+n\pi,\quad n\in\mathbb{Z},

    which implies

    x=π28+2nπ,nZ.x=\frac{\pi}{2}-8+2n\pi,\quad n\in\mathbb{Z}.
  • Case 2:

    tanx2=1.\tan\frac{x}{2}=-1.

    Therefore,

    x2=π4+nπ,nZ,\frac{x}{2}=-\frac{\pi}{4}+n\pi,\quad n\in\mathbb{Z},

    and so

    x=π2+2nπ,nZ.x=-\frac{\pi}{2}+2n\pi,\quad n\in\mathbb{Z}.

The solutions of the equation

secx+tanx=cot4\sec x+\tan x=\cot 4

are:

x=π28+2nπorx=π2+2nπ,nZ.x=\frac{\pi}{2}-8+2n\pi\quad\text{or}\quad x=-\frac{\pi}{2}+2n\pi,\quad n\in\mathbb{Z}.