Question
Question: Solve sec x+ tan x = cot 4...
Solve sec x+ tan x = cot 4
Answer
x = \frac{\pi}{2}-8+2n\pi or x=-\frac{\pi}{2}+2n\pi, n\in\mathbb{Z}
Explanation
Solution
We wish to solve
secx+tanx=cot4.A step‐by‐step solution is given below.
Step 1. Express in terms of sine and cosine
Recall that
secx+tanx=cosx1+cosxsinx=cosx1+sinx.Thus the equation becomes
cosx1+sinx=cot4=sin4cos4.Step 2. Cross Multiply
Assuming cosx=0 and sin4=0, cross multiply:
(1+sinx)sin4=cos4cosx.Step 3. Use the Tangent Half‐Angle Substitution
A neat way to simplify cosx1+sinx is to use the substitution
t=tan2x.Recall the identities:
sinx=1+t22t,cosx=1+t21−t2.Then
cosx1+sinx=1+t21−t21+1+t22t=1−t2(1+t2)+2t=1−t2(1+t)2.Thus the equation becomes
1−t2(1+t)2=cot4=sin4cos4.Step 4. Solve for t
Write the equation as:
(1+t)2=sin4cos4(1−t2).Let
A=sin4cos4(note A>0 if 4 is in radians with sin4=0).Then
(1+t)2=A(1−t2).Expand the left‐hand side:
1+2t+t2=A−At2.Rearrange to obtain:
(1+A)t2+2t+(1−A)=0.This is a quadratic in t. The solution is given by
t=2(1+A)−2±4−4(1+A)(1−A).Notice that
(1+A)(1−A)=1−A2,so the discriminant becomes:
4−4(1−A2)=4A2.Thus,
t=2(1+A)−2±2A=1+A−1±A.This gives two cases:
- Using the “+” sign: t=1+A−1+A.
- Using the “–” sign: t=1+A−1−A=−1.
Since t=tan2x, we now have:
-
Case 1:
tan2x=A+1A−1,A=cot4.Notice that
A+1A−1=cot4+1cot4−1.Write cot4=sin4cos4 so that
cot4+1cot4−1=sin4cos4+1sin4cos4−1=cos4+sin4cos4−sin4.Now, recalling that
cos4+sin4cos4−sin4=1+tan41−tan4=tan(4π−4),we obtain
tan2x=tan(4π−4).Hence,
2x=4π−4+nπ,n∈Z,which implies
x=2π−8+2nπ,n∈Z. -
Case 2:
tan2x=−1.Therefore,
2x=−4π+nπ,n∈Z,and so
x=−2π+2nπ,n∈Z.
The solutions of the equation
secx+tanx=cot4are:
x=2π−8+2nπorx=−2π+2nπ,n∈Z.