Solveeit Logo

Question

Question: Solve: \(\sec \theta -1=\left( \sqrt{2}-1 \right)\tan \theta \)....

Solve: secθ1=(21)tanθ\sec \theta -1=\left( \sqrt{2}-1 \right)\tan \theta .

Explanation

Solution

We use the given equation and factorise it into multiplication of two trigonometric functions by converting them into terms of sine and cosine function. We solve that to find two equational parts. We find their general solution and take the combined solution.

Complete step by step answer:
We apply the theorems of trigonometry cosθ.secθ=1,tanθ=sinθcosθ\cos \theta .\sec \theta =1,\tan \theta =\dfrac{\sin \theta }{\cos \theta }. The equation becomes
secθ1=(21)tanθ cosθ(secθ1)=(21)tanθ.cosθ 1cosθ=(21)sinθ \begin{aligned} & \sec \theta -1=\left( \sqrt{2}-1 \right)\tan \theta \\\ & \Rightarrow \cos \theta \left( \sec \theta -1 \right)=\left( \sqrt{2}-1 \right)\tan \theta .\cos \theta \\\ & \Rightarrow 1-\cos \theta =\left( \sqrt{2}-1 \right)\sin \theta \\\ \end{aligned}
Now we apply formula of submultiple angles which tells us
1cosθ=2sin2θ2,sinθ=2sinθ2cosθ21-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2},\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} .
Now the equation changes to
1cosθ=(21)sinθ 2sin2θ2=(21)(2sinθ2cosθ2) 2sinθ2(sinθ2(21)cosθ2)=0 \begin{aligned} & 1-\cos \theta =\left( \sqrt{2}-1 \right)\sin \theta \\\ & \Rightarrow 2{{\sin }^{2}}\dfrac{\theta }{2}=\left( \sqrt{2}-1 \right)\left( 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \right) \\\ & \Rightarrow 2\sin \dfrac{\theta }{2}\left( \sin \dfrac{\theta }{2}-\left( \sqrt{2}-1 \right)\cos \dfrac{\theta }{2} \right)=0 \\\ \end{aligned}
We converted the given equation into its factorisation form. We break it into two parts as
2sinθ2=0,(sinθ2(21)cosθ2)=02\sin \dfrac{\theta }{2}=0,\left( \sin \dfrac{\theta }{2}-\left( \sqrt{2}-1 \right)\cos \dfrac{\theta }{2} \right)=0.
The first equation gives one part of the general solution for θ\theta .
2sinθ2=0sinθ2=0 θ2=nπ θ=2nπ,[nZ]..........(i) \begin{aligned} & 2\sin \dfrac{\theta }{2}=0\Rightarrow \sin \dfrac{\theta }{2}=0 \\\ & \Rightarrow \dfrac{\theta }{2}=n\pi \\\ & \Rightarrow \theta =2n\pi ,\left[ n\in \mathbb{Z} \right]..........(i) \\\ \end{aligned}
Now we work with the second part (sinθ2(21)cosθ2)=0\left( \sin \dfrac{\theta }{2}-\left( \sqrt{2}-1 \right)\cos \dfrac{\theta }{2} \right)=0. Solving this we get
(sinθ2(21)cosθ2)=0 sinθ2=(21)cosθ2 tanθ2=(21) \begin{aligned} & \left( \sin \dfrac{\theta }{2}-\left( \sqrt{2}-1 \right)\cos \dfrac{\theta }{2} \right)=0 \\\ & \Rightarrow \sin \dfrac{\theta }{2}=\left( \sqrt{2}-1 \right)\cos \dfrac{\theta }{2} \\\ & \Rightarrow \tan \dfrac{\theta }{2}=\left( \sqrt{2}-1 \right) \\\ \end{aligned}
We got the value of tanθ2\tan \dfrac{\theta }{2}. Using the submultiple angle formula tanθ=2tanθ21tan2θ2\tan \theta =\dfrac{2\tan \dfrac{\theta }{2}}{1-{{\tan }^{2}}\dfrac{\theta }{2}}, we get the value of tanθ\tan \theta .
So, tanθ=2tanθ21tan2θ2=2(21)1(21)2=2(21)121+22=2(21)2(21)=1\tan \theta =\dfrac{2\tan \dfrac{\theta }{2}}{1-{{\tan }^{2}}\dfrac{\theta }{2}}=\dfrac{2\left( \sqrt{2}-1 \right)}{1-{{\left( \sqrt{2}-1 \right)}^{2}}}=\dfrac{2\left( \sqrt{2}-1 \right)}{1-2-1+2\sqrt{2}}=\dfrac{2\left( \sqrt{2}-1 \right)}{2\left( \sqrt{2}-1 \right)}=1
Now we use the formula of general solution to find another set of value for θ\theta .

& \tan \theta =1=\tan \left( \dfrac{\pi }{4} \right) \\\ & \Rightarrow \theta =n\pi +\dfrac{\pi }{4},\left[ n\in \mathbb{Z} \right]...................(ii) \\\ \end{aligned}$$ **From solution (i) and (ii) we get the final solution of the equation $\sec \theta -1=\left( \sqrt{2}-1 \right)\tan \theta $ as $$\theta =\left( 2n\pi \right)\cup \left( n\pi +\dfrac{\pi }{4} \right),\left[ n\in \mathbb{Z} \right]$$.** **Note:** We can’t eliminate the part of $2\sin \dfrac{\theta }{2}$ from the factorisation $2\sin \dfrac{\theta }{2}\left( \sin \dfrac{\theta }{2}-\left( \sqrt{2}-1 \right)\cos \dfrac{\theta }{2} \right)=0$ as that includes one solution of the main equation. $2\sin \dfrac{\theta }{2}=0$ also satisfies the equation.