Question
Question: Solve: \( \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 \) A. \( x\ln \left( \...
Solve: (x−ylny+ylnx)dx+x(lny−lnx)dy=0
A. xln(xy)−y+xlnx+Cy=0
B. yln(yx)−y+xlnx+Cx=0
C. xln(yx)−y+xlnx+Cy=0
D. yln(xy)−y+xlnx+Cx=0
Solution
The given differential equation can be converted into a variable separable form by making the appropriate substitution y=vx . Separate the variables x and v and then integrate both sides to obtain the solution.
Recall some properties of the natural logarithm: ln(ba)=lna−lnb , dxd(lnx)=x1 and ∫(lnx)dx=x(lnx)−x .
The rule for derivative of a product of two functions is: d(uv)=udv+vdu .
Complete step-by-step answer:
The given equation (x−ylny+ylnx)dx+x(lny−lnx)dy=0 is not yet variable separable.
Taking out y as common in the first term, we get:
⇒ [x−y(lny−lnx)]dx+x(lny−lnx)dy=0
Using ln(ba)=lna−lnb , we get:
⇒ [x−yln(xy)]dx+xln(xy)dy=0
Since y is the dependent variable, let's substitute y=vx , where v is a function of x, and try to separate the variables:
⇒ [x−vxln(xvx)]dx+xln(xvx)d(vx)=0
Using the rule of multiplication for derivatives d(uv)=udv+vdu , we get:
⇒ [x−vxlnv]dx+x(lnv)(xdv+vdx)=0
On multiplying the terms and separating the variables, we get:
⇒ xdx−vx(lnv)dx+x2(lnv)dv+vx(lnv)dx=0
⇒ xdx+x2(lnv)dv=0
Dividing by x2 , we get:
⇒ xdx+(lnv)dv=0
The variables are separated. Now, integrating both sides, we get:
⇒ lnx+(vlnv−v)+C=0
⇒ lnx+v(lnv−1)+C=0
Back substitution y=vx , we get:
⇒ lnx+(xy)[ln(xy)−1]+C=0
Multiplying by x, we get:
⇒ xlnx+yln(xy)−y+Cx=0
The correct answer is D. yln(xy)−y+xlnx+Cx=0 .
Note: The linear differential equations are identified as variable separable, ordinary, homogenous or exact which aids in getting to know the required steps for solving them.
In general, a differential equation of the variable separable form, f(x)dx=g(y)dy , can be solved by simply integrating both the sides. Other types of differential equations can be converted into this form by either substitution or by multiplying with the integrating factors.