Solveeit Logo

Question

Question: Solve: \( \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 \) A. \( x\ln \left( \...

Solve: (xylny+ylnx)dx+x(lnylnx)dy=0\left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0
A. xln(yx)y+xlnx+Cy=0x\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cy=0
B. yln(xy)y+xlnx+Cx=0y\ln \left( \dfrac{x}{y} \right)-y+x\ln x+Cx=0
C. xln(xy)y+xlnx+Cy=0x\ln \left( \dfrac{x}{y} \right)-y+x\ln x+Cy=0
D. yln(yx)y+xlnx+Cx=0y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0

Explanation

Solution

The given differential equation can be converted into a variable separable form by making the appropriate substitution y=vxy=vx . Separate the variables x and v and then integrate both sides to obtain the solution.
Recall some properties of the natural logarithm: ln(ab)=lnalnb\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b , ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} and (lnx)dx=x(lnx)x\int{\left( \ln x \right)dx}=x\left( \ln x \right)-x .
The rule for derivative of a product of two functions is: d(uv)=udv+vdud(uv)=udv+vdu .

Complete step-by-step answer:
The given equation (xylny+ylnx)dx+x(lnylnx)dy=0\left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 is not yet variable separable.
Taking out y as common in the first term, we get:
[xy(lnylnx)]dx+x(lnylnx)dy=0\left[ x-y\left( \ln y-\ln x \right) \right]dx+x\left( \ln y-\ln x \right)dy=0
Using ln(ab)=lnalnb\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b , we get:
[xyln(yx)]dx+xln(yx)dy=0\left[ x-y\ln \left( \dfrac{y}{x} \right) \right]dx+x\ln \left( \dfrac{y}{x} \right)dy=0
Since y is the dependent variable, let's substitute y=vxy=vx , where v is a function of x, and try to separate the variables:
[xvxln(vxx)]dx+xln(vxx)d(vx)=0\left[ x-vx\ln \left( \dfrac{vx}{x} \right) \right]dx+x\ln \left( \dfrac{vx}{x} \right)d(vx)=0
Using the rule of multiplication for derivatives d(uv)=udv+vdud(uv)=udv+vdu , we get:
[xvxlnv]dx+x(lnv)(xdv+vdx)=0\left[ x-vx\ln v \right]dx+x\left( \ln v \right)(xdv+vdx)=0
On multiplying the terms and separating the variables, we get:
xdxvx(lnv)dx+x2(lnv)dv+vx(lnv)dx=0xdx-vx(\ln v)dx+{{x}^{2}}(\ln v)dv+vx(\ln v)dx=0
xdx+x2(lnv)dv=0xdx+{{x}^{2}}(\ln v)dv=0
Dividing by x2{{x}^{2}} , we get:
dxx+(lnv)dv=0\dfrac{dx}{x}+(\ln v)dv=0
The variables are separated. Now, integrating both sides, we get:
lnx+(vlnvv)+C=0\ln x+\left( v\ln v-v \right)+C=0
lnx+v(lnv1)+C=0\ln x+v\left( \ln v-1 \right)+C=0
Back substitution y=vxy=vx , we get:
lnx+(yx)[ln(yx)1]+C=0\ln x+\left( \dfrac{y}{x} \right)\left[ ln\left( \dfrac{y}{x} \right)-1 \right]+C=0
Multiplying by x, we get:
xlnx+yln(yx)y+Cx=0x\ln x+y\ln \left( \dfrac{y}{x} \right)-y+Cx=0
The correct answer is D. yln(yx)y+xlnx+Cx=0y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 .

Note: The linear differential equations are identified as variable separable, ordinary, homogenous or exact which aids in getting to know the required steps for solving them.
In general, a differential equation of the variable separable form, f(x)dx=g(y)dyf(x)dx=g(y)dy , can be solved by simply integrating both the sides. Other types of differential equations can be converted into this form by either substitution or by multiplying with the integrating factors.