Solveeit Logo

Question

Question: Solve \[\left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \rig...

Solve [1tan3AtanA][1cot3AcotA]=\left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \right] =
A.tanA\tan A
B.tan2A\tan 2A
C.cotA\cot A
D.cot2A\cot 2A

Explanation

Solution

Hint : For question related to proof of tan\tan and cot\cot we have always have to convert cot\cot and tan\tan into tan=sincos\tan = \dfrac{{\sin }}{{\cos }} and for cot=cossin\cot = \dfrac{{\cos }}{{\sin }} , which will simplify the question briefly . Do not use any identity for tan3A\tan 3A and cot3A\cot 3A which would make the question more complex . These questions are short and tricky .

Complete step-by-step answer :
Given : [1tan3AtanA][1cot3AcotA]\left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \right] ,
putting tan3A=sin3Acos3A\tan 3A = \dfrac{{\sin 3A}}{{\cos 3A}} and cot3A=cos3Asin3A\cot 3A = \dfrac{{\cos 3A}}{{\sin 3A}} we get ,
=[1sin3Acos3AsinAcosA][1cos3Asin3AcosAsinA]= \left[ {\dfrac{1}{{\dfrac{{\sin 3A}}{{\cos 3A}} - \dfrac{{\sin A}}{{\cos A}}}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\cos 3A}}{{\sin 3A}} - \dfrac{{\cos A}}{{\sin A}}}}} \right] , on solving we get
=[1sin3AcosAcos3AsinAcos3A cosA][1cos3AsinAsin3AcosAsin3AsinA]= \left[ {\dfrac{1}{{\dfrac{{\sin 3A\cos A - \cos 3A\sin A}}{{\cos 3A{\text{ }}\cos A}}}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\cos 3A\sin A - \sin 3A\cos A}}{{\sin 3A\sin A}}}}} \right]
On further simplifying, we get
=[cos3AcosAsin3AcosAcos3AsinA][sin3AsinAcos3AsinAsin3AcosA]= \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right] - \left[ {\dfrac{{\sin 3A\sin A}}{{\cos 3A\sin A - \sin 3A\cos A}}} \right] , on rearranging we get ,
=[cos3AcosAsin3AcosAcos3AsinA]+[sin3AsinAsin3AcosAcos3AsinA]= \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin 3A\cos A - \cos 3A\sin A}}} \right]
Now , using the identity of sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B in denominator we get ,
=[cos3AcosAsin(3AA)]+[sin3AsinAsin(3AA)]= \left[ {\dfrac{{\cos 3A\cos A}}{{\sin (3A - A)}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin (3A - A)}}} \right] , on solving we get
=[cos3AcosAsin2A]+[sin3AsinAsin2A]= \left[ {\dfrac{{\cos 3A\cos A}}{{\sin 2A}}} \right] + \left[ {\dfrac{{\sin 3A\sin A}}{{\sin 2A}}} \right]
On solving further we get
=[cos3AcosA+sin3AsinAsin2A]= \left[ {\dfrac{{\cos 3A\cos A + \sin 3A\sin A}}{{\sin 2A}}} \right] ,
Now using the identity of cos(AB)=cosAcosB+sinAsinB\cos (A - B) = \cos A\cos B + \sin A\sin B , we get
=[cos(3AA)sin2A]= \left[ {\dfrac{{\cos (3A - A)}}{{\sin 2A}}} \right]
=[cos2Asin2A]= \left[ {\dfrac{{\cos 2A}}{{\sin 2A}}} \right]
Hence, we can write the final answer as
=cot2A= \cot 2A .
Therefore , option ( 4 ) is the correct answer for the given question .
So, the correct answer is “Option 4”.

Note: Alternate Method :
=[1tan3AtanA][1cot3AcotA]= \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \right]
We know that cotA=1tanA\cot A = \dfrac{1}{{\tan A}} , applying this to above equation we get
=[1tan3AtanA][11tan3A1tanA]= \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}}} \right]
On solving we get
=[1tan3AtanA][11tan3A1tanA]= \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{1}{{\tan 3A}} - \dfrac{1}{{\tan A}}}}} \right] , on solving we get
=[1tan3AtanA][1tanAtan3Atan3AtanA]= \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\dfrac{{\tan A - \tan 3A}}{{\tan 3A\tan A}}}}} \right]
On simplifying we get
=[1tan3AtanA][tan3AtanAtanAtan3A]= \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{{\tan 3A\tan A}}{{\tan A - \tan 3A}}} \right] , on rearranging we get
=[1tan3AtanA]+[tan3AtanAtan3AtanA]= \left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] + \left[ {\dfrac{{\tan 3A\tan A}}{{\tan 3A - \tan A}}} \right]
On further solving we get
=[1+tan3AtanAtan3AtanA]= \left[ {\dfrac{{1 + \tan 3A\tan A}}{{\tan 3A - \tan A}}} \right] , rewriting the expression we get
=[1tan3AtanA1+tan3AtanA]= \left[ {\dfrac{1}{{\dfrac{{\tan 3A - \tan A}}{{1 + \tan 3A\tan A}}}}} \right]
Now using the identity of tan(A+B)=tanA+tanB1+tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 + \tan A\tan B}}
=[1tan(3AA)]= \left[ {\dfrac{1}{{\tan (3A - A)}}} \right] , on solving we get
=[1tan2A]= \left[ {\dfrac{1}{{\tan 2A}}} \right]
Hence, we can write the final answer as
=cot2A= \cot 2A