Question
Question: Solve \[\left[ {\dfrac{1}{{\tan 3A - \tan A}}} \right] - \left[ {\dfrac{1}{{\cot 3A - \cot A}}} \rig...
Solve [tan3A−tanA1]−[cot3A−cotA1]=
A.tanA
B.tan2A
C.cotA
D.cot2A
Solution
Hint : For question related to proof of tan and cot we have always have to convert cot and tan into tan=cossin and for cot=sincos , which will simplify the question briefly . Do not use any identity for tan3A and cot3A which would make the question more complex . These questions are short and tricky .
Complete step-by-step answer :
Given : [tan3A−tanA1]−[cot3A−cotA1] ,
putting tan3A=cos3Asin3A and cot3A=sin3Acos3A we get ,
=cos3Asin3A−cosAsinA1−sin3Acos3A−sinAcosA1 , on solving we get
=cos3A cosAsin3AcosA−cos3AsinA1−sin3AsinAcos3AsinA−sin3AcosA1
On further simplifying, we get
=[sin3AcosA−cos3AsinAcos3AcosA]−[cos3AsinA−sin3AcosAsin3AsinA] , on rearranging we get ,
=[sin3AcosA−cos3AsinAcos3AcosA]+[sin3AcosA−cos3AsinAsin3AsinA]
Now , using the identity of sin(A+B)=sinAcosB+cosAsinB in denominator we get ,
=[sin(3A−A)cos3AcosA]+[sin(3A−A)sin3AsinA] , on solving we get
=[sin2Acos3AcosA]+[sin2Asin3AsinA]
On solving further we get
=[sin2Acos3AcosA+sin3AsinA] ,
Now using the identity of cos(A−B)=cosAcosB+sinAsinB , we get
=[sin2Acos(3A−A)]
=[sin2Acos2A]
Hence, we can write the final answer as
=cot2A .
Therefore , option ( 4 ) is the correct answer for the given question .
So, the correct answer is “Option 4”.
Note: Alternate Method :
=[tan3A−tanA1]−[cot3A−cotA1]
We know that cotA=tanA1 , applying this to above equation we get
=[tan3A−tanA1]−tan3A1−tanA11
On solving we get
=[tan3A−tanA1]−tan3A1−tanA11 , on solving we get
=[tan3A−tanA1]−tan3AtanAtanA−tan3A1
On simplifying we get
=[tan3A−tanA1]−[tanA−tan3Atan3AtanA] , on rearranging we get
=[tan3A−tanA1]+[tan3A−tanAtan3AtanA]
On further solving we get
=[tan3A−tanA1+tan3AtanA] , rewriting the expression we get
=1+tan3AtanAtan3A−tanA1
Now using the identity of tan(A+B)=1+tanAtanBtanA+tanB
=[tan(3A−A)1] , on solving we get
=[tan2A1]
Hence, we can write the final answer as
=cot2A