Solveeit Logo

Question

Question: Solve: \(\left( {{D}^{2}}+4D+13 \right)y=\cos 3x\)....

Solve: (D2+4D+13)y=cos3x\left( {{D}^{2}}+4D+13 \right)y=\cos 3x.

Explanation

Solution

The given second order differential equation has a function of x. So, this becomes a particular integral. As the function is trigonometrical, we assume the integral function as y(x)=Acos3x+Bsin3xy\left( x \right)=A\cos 3x+B\sin 3x. We find the values of D2=d2dx2,D=ddx{{D}^{2}}=\dfrac{{{d}^{2}}}{d{{x}^{2}}},D=\dfrac{d}{dx} and place them in the main equation. We get two equations of two unknowns A and B. we solve them to find the values of A and B.

Complete step by step answer:
We have been given a second order differential equation with constant coefficient.
(D2+4D+13)y=cos3x\left( {{D}^{2}}+4D+13 \right)y=\cos 3x. Here D2=d2dx2,D=ddx{{D}^{2}}=\dfrac{{{d}^{2}}}{d{{x}^{2}}},D=\dfrac{d}{dx}.
In this type of equation, we get the characteristics equation by taking the differential form of the equation.
We assume the solution of the differential equation. As the function of x is f(x)=cos3xf\left( x \right)=\cos 3x. We take the PI as y(x)=Acos3x+Bsin3xy\left( x \right)=A\cos 3x+B\sin 3x.
Here PI describes a particular integral which is the solution of the differential equation (D2+4D+13)y=cos3x\left( {{D}^{2}}+4D+13 \right)y=\cos 3x. First, we find out the PI differentiations.
We have (D2+4D+13)y=d2ydx2+4dydx+13y\left( {{D}^{2}}+4D+13 \right)y=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+4\dfrac{dy}{dx}+13y.
Differentiating both side of y(x)=Acos3x+Bsin3xy\left( x \right)=A\cos 3x+B\sin 3x, we get
y(x)=Acos3x+Bsin3x dydx=3Asin3x+3Bcos3x \begin{aligned} & y\left( x \right)=A\cos 3x+B\sin 3x \\\ & \Rightarrow \dfrac{dy}{dx}=-3A\sin 3x+3B\cos 3x \\\ \end{aligned}
We differentiate again to find the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.
dydx=3Asin3x+3Bcos3x d2ydx2=9Acos3x9Bsin3x \begin{aligned} & \dfrac{dy}{dx}=-3A\sin 3x+3B\cos 3x \\\ & \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-9A\cos 3x-9B\sin 3x \\\ \end{aligned}
We put the values in the equation to get
d2ydx2+4dydx+13y =(9Acos3x9Bsin3x)+4(3Asin3x+3Bcos3x)+13(Acos3x+Bsin3x) =cos3x(4A+12B)+sin3x(4B12A) \begin{aligned} & \dfrac{{{d}^{2}}y}{d{{x}^{2}}}+4\dfrac{dy}{dx}+13y \\\ & =\left( -9A\cos 3x-9B\sin 3x \right)+4\left( -3A\sin 3x+3B\cos 3x \right)+13\left( A\cos 3x+B\sin 3x \right) \\\ & =\cos 3x\left( 4A+12B \right)+\sin 3x\left( 4B-12A \right) \\\ \end{aligned}
We have to satisfy the value of (D2+4D+13)y=d2ydx2+4dydx+13y\left( {{D}^{2}}+4D+13 \right)y=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+4\dfrac{dy}{dx}+13y with cos3x\cos 3x.
We equate them to get two equations of two unknowns A and B.
cos3x(4A+12B)+sin3x(4B12A)=cos3x\cos 3x\left( 4A+12B \right)+\sin 3x\left( 4B-12A \right)=\cos 3x.
The equations are (4A+12B)=1,(4B12A)=0\left( 4A+12B \right)=1,\left( 4B-12A \right)=0.
We multiply the first equation with 3 and add it to the second equation.
3(4A+12B)=3,(4B12A)=0 12A+36B=3,4B12A=0 \begin{aligned} & 3\left( 4A+12B \right)=3,\left( 4B-12A \right)=0 \\\ & \Rightarrow 12A+36B=3,4B-12A=0 \\\ \end{aligned}
Adding them we get
(12A+36B)+(4B12A)=3+0 40B=3 B=340 \begin{aligned} & \left( 12A+36B \right)+\left( 4B-12A \right)=3+0 \\\ & \Rightarrow 40B=3 \\\ & \Rightarrow B=\dfrac{3}{40} \\\ \end{aligned}
Putting value of B in one equation we get
(4A+12B)=1 4A+12(340)=1 4A=1910=110 A=140 \begin{aligned} & \left( 4A+12B \right)=1 \\\ & \Rightarrow 4A+12\left( \dfrac{3}{40} \right)=1 \\\ & \Rightarrow 4A=1-\dfrac{9}{10}=\dfrac{1}{10} \\\ & \Rightarrow A=\dfrac{1}{40} \\\ \end{aligned}
We got values of both A and B.
Putting the values in y(x)=Acos3x+Bsin3xy\left( x \right)=A\cos 3x+B\sin 3x we get y(x)=cos3x40+3sin3x40y\left( x \right)=\dfrac{\cos 3x}{40}+\dfrac{3\sin 3x}{40}.
Simplifying we get 40y=cos3x+3sin3x40y=\cos 3x+3\sin 3x. This is the solution of (D2+4D+13)y=cos3x\left( {{D}^{2}}+4D+13 \right)y=\cos 3x.

Note: We also can solve it by breaking it in two parts of CF and PI. Here CF defines the complementary function which is the solution of (D2+4D+13)y=0\left( {{D}^{2}}+4D+13 \right)y=0. Then we place the value of 3 in the particular integral. The final solution becomes y(x)=CF+PIy\left( x \right)=CF+PI.