Solveeit Logo

Question

Question: Solve: \(\left| \cos x \right|=\cos x-2\sin x\) [a] \(x=\left( 2n+1 \right)\pi +\dfrac{\pi }{4}\) ...

Solve: cosx=cosx2sinx\left| \cos x \right|=\cos x-2\sin x
[a] x=(2n+1)π+π4x=\left( 2n+1 \right)\pi +\dfrac{\pi }{4}
[b] (2n+1)π+π2\left( 2n+1 \right)\pi +\dfrac{\pi }{2}
[c] 2nπ+π42n\pi +\dfrac{\pi }{4}
[d] 2nπ+π22n\pi +\dfrac{\pi }{2}

Explanation

Solution

Hint: Use the fact that if x=a,a0\left| x \right|=a,a\ge 0, then the solution of the given system is x=±ax=\pm a. Hence the system cosx=cosx2sinx\left| \cos x \right|=\cos x-2\sin x, will have a solution if cosx2sinx0\cos x-2\sin x\ge 0 and the solution of the system will be cosx=±(cosx2sinx)\cos x=\pm \left( \cos x-2\sin x \right). Take the signs individually and solve the equations. Use the fact that if tanx = tany, then x=nπ+y,nZx=n\pi +y,n\in \mathbb{Z} and if sinx = siny, then x=nπ+(1)ny,nZx=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}. Remove the extraneous roots and hence find the general solution of the equation. Alternatively, find the roots of the given equation in the interval [0,2π)\left[ 0,2\pi \right). If the set of the roots found is S(say), then the general solution of the given equation is x\in \left\\{ 2n\pi +y,n\in \mathbb{Z},y\in S \right\\}.

Complete step-by-step answer:
We have cosx=cosx2sinx\left| \cos x \right|=\cos x-2\sin x.
Since x0,\left| x \right|\ge 0, we have cosx2sinx0 (a)\cos x-2\sin x\ge 0\text{ }\left( a \right)
The equation (a) will be later on used.
Now, we know that if x=a,a0\left| x \right|=a,a\ge 0, then the solution of the given system is x=±ax=\pm a.
Hence, we have
cosx=±(cosx2sinx)\cos x=\pm \left( \cos x-2\sin x \right)
Taking the positive sign, we get
cosx=cosx2sinx2sinx=0sinx=0\cos x=\cos x-2\sin x\Rightarrow 2\sin x=0\Rightarrow \sin x=0
Taking the negative sign, we get
cosx=cosx+2sinx2cosx=2sinxtanx=1\cos x=-\cos x+2\sin x\Rightarrow 2\cos x=2\sin x\Rightarrow \tan x=1
Solving sinx = 0:
We know that sin(0) = 0
Hence, we have sinx = sin0
We know that if sinx = siny, then x=nπ+(1)ny,nZx=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z}
Hence, we have
x=nπ,nZx=n\pi ,n\in \mathbb{Z}
Solving tanx = 1
We have
tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1
Hence, we have
tanx=tanπ4\tan x=\tan \dfrac{\pi }{4}
We know that of tanx = tany, then x=nπ+y,nZx=n\pi +y,n\in \mathbb{Z}
Hence, we have
x=nπ+π4,nZx=n\pi +\dfrac{\pi }{4},n\in \mathbb{Z}
Now consider the solution x=nπ,nZx=n\pi ,n\in \mathbb{Z}
When n is odd, we have cosx=cos((2k+1)π)=1\cos x=\cos \left( \left( 2k+1 \right)\pi \right)=-1 and sin((2k+1)π)=1\sin \left( \left( 2k+1 \right)\pi \right)=1
Hence, we have
cosx<2sinx\cos x < 2\sin x
Hence when n is odd x=nπx=n\pi does not satisfy equation(a) and hence is not the solution of the given equation.
When n is even, we have cosx=cos2kπ=1\cos x=\cos 2k\pi =1 and sinx=sin2kπ=0\sin x=\sin 2k\pi =0
Hence, we have cosx2sinx\cos x\ge 2\sin x and hence when n is even x=nπx=n\pi is a solution of the given equation
Consider the solution x=nπ+π4x=n\pi +\dfrac{\pi }{4}
When n is odd, we have cosx=12\cos x=-\dfrac{1}{\sqrt{2}} and sinx=12\sin x=\dfrac{-1}{\sqrt{2}}
Hence, we have cosx2sinx\cos x\ge 2\sin x
Hence when n is odd, we have x=nπ+π4x=n\pi +\dfrac{\pi }{4} is a solution of the given equation
When n is even, we have cosx=12\cos x=\dfrac{1}{\sqrt{2}} and sinx=12\sin x=\dfrac{1}{\sqrt{2}}
Hence, we have cosx<2sinx\cos x<2\sin x
Hence, when n is even, x=nπ+π4x=n\pi +\dfrac{\pi }{4} is not a solution of the given equation.
Hence the solution set of the given equation is \left\\{ 2k\pi ,k\in \mathbb{Z} \right\\}\bigcup \left\\{ \left( 2k+1 \right)\pi +\dfrac{\pi }{4},k\in \mathbb{Z} \right\\}=\left\\{ 2k\pi ,k\in \mathbb{Z} \right\\}\bigcup \left\\{ 2k\pi +\dfrac{3\pi }{4},k\in \mathbb{Z} \right\\}, which is the required solution set of the given equation.
Hence option [a] is correct.

Note: Alternative method:
In the interval [0,2π)\left[ 0,2\pi \right), we have x=0,x=3π4x=0,x=\dfrac{3\pi }{4} satisfy the given equation.
Hence, we have the solution of the given equation is x\in \left\\{ 2k\pi ,2k\pi +\dfrac{\pi }{4},k\in \mathbb{Z} \right\\}