Question
Question: Solve \[{{\left( 2x+3y \right)}^{5}}\] using binomial theorem....
Solve (2x+3y)5 using binomial theorem.
Solution
In this type of question we have to use the concept of binomial theorem. We know that the binomial theorem is a mathematical statement that expresses for any positive integer n, the nth power of the sum of two terms a and b. We will write the binomial theorem as (a+b)n=nc0an+nc1an−1b+nc2an−2b2+nc3an−3b3+⋯⋯⋯+ncn−1abn−1+ncnbn. The constants nc0,nc1,nc2,nc3,⋯⋯⋯ are called as binomial coefficients which can be obtained by using the formula ncr=r!(n−r)!n!.
Complete step-by-step solution:
Now we have to expand (2x+3y)5 by using the binomial theorem.
Let us consider the statement of binomial theorem which states that for any positive integer n,
(a+b)n=nc0an+nc1an−1b+nc2an−2b2+nc3an−3b3+⋯⋯⋯+ncn−1abn−1+ncnbn where ncr=r!(n−r)!n!
If we compare the given expression i.e. (2x+3y)5 with (a+b)n we get,
⇒a=2x,b=3y&n=5
Hence, by using binomial expansion stated above we can write
⇒(2x+3y)5=5c0(2x)5+5c1(2x)4(3y)+5c2(2x)3(3y)2+5c3(2x)2(3y)3+5c4(2x)1(3y)4+5c5(3y)5We know that, the binomial coefficients which are equidistant from the beginning and from the ending are of equal value i.e.nc0=ncn,nc1=ncn−1,nc2=ncn−2,⋯⋯⋯. Hence, in this case we can write 5c0=5c5,5c1=5c4,5c2=5c3.
Also by substituting the values 5c0=0!5!5!=1,5c1=1!4!5!=1!4!5×4!=5,5c2=2!3!5!=(2×1)×3!5×4×3!=10 which we have calculated by using the formula ncr=r!(n−r)!n! and n!=n×(n−1)!=n×(n−1)×(n−2)!=n×(n−1)×(n−2)×⋯⋯×2×1 we can write the above expansion
⇒(2x+3y)5=1(2x)5+5(2x)4(3y)+10(2x)3(3y)2+10(2x)2(3y)3+5(2x)1(3y)4+1(3y)5
By simplifying it further we get
\Rightarrow {{\left( 2x+3y \right)}^{5}}={{2}^{5}}{{x}^{5}}+\left( 5\centerdot {{2}^{4}}\centerdot 3\centerdot {{x}^{4}}\centerdot y \right)+\left( 10\centerdot {{2}^{3}}\centerdot {{3}^{2}}\centerdot {{x}^{3}}\centerdot {{y}^{2}} \right)+\left( 10\centerdot {{2}^{2}}\centerdot {{3}^{3}}\centerdot {{x}^{2}}\centerdot {{y}^{3}} \right)+\left( 5\centerdot 2\centerdot {{3}^{4}}\centerdot x\centerdot {{y}^{4}} \right)+{{3}^{5}}{{y}^{5}}$$$$\begin{aligned}
& \Rightarrow {{\left( 2x+3y \right)}^{5}}=32{{x}^{5}}+\left( 5\centerdot 16\centerdot 3\centerdot {{x}^{4}}\centerdot y \right)+\left( 10\centerdot 8\centerdot 9\centerdot {{x}^{3}}\centerdot {{y}^{2}} \right)+\left( 10\centerdot 4\centerdot 27\centerdot {{x}^{2}}\centerdot {{y}^{3}} \right)+\left( 5\centerdot 2\centerdot 81\centerdot x\centerdot {{y}^{4}} \right)+243{{y}^{5}} \\\
& \Rightarrow {{\left( 2x+3y \right)}^{5}}=32{{x}^{5}}+\left( 240{{x}^{4}}y \right)+\left( 720{{x}^{3}}{{y}^{2}} \right)+\left( 1080{{x}^{2}}{{y}^{3}} \right)+\left( 810x{{y}^{4}} \right)+243{{y}^{5}} \\\
& \Rightarrow {{\left( 2x+3y \right)}^{5}}=32{{x}^{5}}+240{{x}^{4}}y+720{{x}^{3}}{{y}^{2}}+1080{{x}^{2}}{{y}^{3}}+810x{{y}^{4}}+243{{y}^{5}} \\\
\end{aligned}Hence, by using binomial theorem the expansion of (2x+3y)5 is 32x5+240x4y+720x3y2+1080x2y3+810xy4+243y5.
Note: In this type of question students have to remember the binomial theorem. Students have to note that to find nc0,nc1,nc2,nc3,⋯⋯⋯ they have to use the formula ncr=r!(n−r)!n!. Also in calculation of nc0,nc1,nc2,nc3,⋯⋯⋯ students have to remember to use the formula n!=n×(n−1)!=n×(n−1)×(n−2)!=n×(n−1)×(n−2)×⋯⋯×2×1. Students have to take care in calculating the value of 5c0 as it includes 0! and they have to remember that 0!=1.