Solveeit Logo

Question

Question: Solve \[{{\left( 2x+3y \right)}^{5}}\] using binomial theorem....

Solve (2x+3y)5{{\left( 2x+3y \right)}^{5}} using binomial theorem.

Explanation

Solution

In this type of question we have to use the concept of binomial theorem. We know that the binomial theorem is a mathematical statement that expresses for any positive integer n, the nth{{n}^{th}} power of the sum of two terms aa and bb. We will write the binomial theorem as (a+b)n=nc0an+nc1an1b+nc2an2b2+nc3an3b3++ncn1abn1+ncnbn{{\left( a+b \right)}^{n}}={}^{n}{{c}_{0}}{{a}^{n}}+{}^{n}{{c}_{1}}{{a}^{n-1}}b+{}^{n}{{c}_{2}}{{a}^{n-2}}{{b}^{2}}+{}^{n}{{c}_{3}}{{a}^{n-3}}{{b}^{3}}+\cdots \cdots \cdots +{}^{n}{{c}_{n-1}}a{{b}^{n-1}}+{}^{n}{{c}_{n}}{{b}^{n}}. The constants nc0,nc1,nc2,nc3,{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}},{}^{n}{{c}_{3}},\cdots \cdots \cdots are called as binomial coefficients which can be obtained by using the formula ncr=n!r!(nr)!{}^{n}{{c}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}.

Complete step-by-step solution:
Now we have to expand (2x+3y)5{{\left( 2x+3y \right)}^{5}} by using the binomial theorem.
Let us consider the statement of binomial theorem which states that for any positive integer n,
(a+b)n=nc0an+nc1an1b+nc2an2b2+nc3an3b3++ncn1abn1+ncnbn{{\left( a+b \right)}^{n}}={}^{n}{{c}_{0}}{{a}^{n}}+{}^{n}{{c}_{1}}{{a}^{n-1}}b+{}^{n}{{c}_{2}}{{a}^{n-2}}{{b}^{2}}+{}^{n}{{c}_{3}}{{a}^{n-3}}{{b}^{3}}+\cdots \cdots \cdots +{}^{n}{{c}_{n-1}}a{{b}^{n-1}}+{}^{n}{{c}_{n}}{{b}^{n}} where ncr=n!r!(nr)!{}^{n}{{c}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}
If we compare the given expression i.e. (2x+3y)5{{\left( 2x+3y \right)}^{5}} with (a+b)n{{\left( a+b \right)}^{n}} we get,
a=2x,b=3y&n=5\Rightarrow a=2x,b=3y\And n=5
Hence, by using binomial expansion stated above we can write
(2x+3y)5=5c0(2x)5+5c1(2x)4(3y)+5c2(2x)3(3y)2+5c3(2x)2(3y)3+5c4(2x)1(3y)4+5c5(3y)5\Rightarrow {{\left( 2x+3y \right)}^{5}}={}^{5}{{c}_{0}}{{\left( 2x \right)}^{5}}+{}^{5}{{c}_{1}}{{\left( 2x \right)}^{4}}\left( 3y \right)+{}^{5}{{c}_{2}}{{\left( 2x \right)}^{3}}{{\left( 3y \right)}^{2}}+{}^{5}{{c}_{3}}{{\left( 2x \right)}^{2}}{{\left( 3y \right)}^{3}}+{}^{5}{{c}_{4}}{{\left( 2x \right)}^{1}}{{\left( 3y \right)}^{4}}+{}^{5}{{c}_{5}}{{\left( 3y \right)}^{5}}We know that, the binomial coefficients which are equidistant from the beginning and from the ending are of equal value i.e.nc0=ncn,nc1=ncn1,nc2=ncn2,{}^{n}{{c}_{0}}={}^{n}{{c}_{n}},{}^{n}{{c}_{1}}={}^{n}{{c}_{n-1}},{}^{n}{{c}_{2}}={}^{n}{{c}_{n-2}},\cdots \cdots \cdots . Hence, in this case we can write 5c0=5c5,5c1=5c4,5c2=5c3{}^{5}{{c}_{0}}={}^{5}{{c}_{5}},{}^{5}{{c}_{1}}={}^{5}{{c}_{4}},{}^{5}{{c}_{2}}={}^{5}{{c}_{3}}.
Also by substituting the values 5c0=5!0!5!=1,5c1=5!1!4!=5×4!1!4!=5,5c2=5!2!3!=5×4×3!(2×1)×3!=10{}^{5}{{c}_{0}}=\dfrac{5!}{0!5!}=1,{}^{5}{{c}_{1}}=\dfrac{5!}{1!4!}=\dfrac{5\times 4!}{1!4!}=5,{}^{5}{{c}_{2}}=\dfrac{5!}{2!3!}=\dfrac{5\times 4\times 3!}{\left( 2\times 1 \right)\times 3!}=10 which we have calculated by using the formula ncr=n!r!(nr)!{}^{n}{{c}_{r}}=\dfrac{n!}{r!\left( n-r \right)!} and n!=n×(n1)!=n×(n1)×(n2)!=n×(n1)×(n2)××2×1n!=n\times \left( n-1 \right)!=n\times \left( n-1 \right)\times \left( n-2 \right)!=n\times \left( n-1 \right)\times \left( n-2 \right)\times \cdots \cdots \times 2\times 1 we can write the above expansion
(2x+3y)5=1(2x)5+5(2x)4(3y)+10(2x)3(3y)2+10(2x)2(3y)3+5(2x)1(3y)4+1(3y)5\Rightarrow {{\left( 2x+3y \right)}^{5}}=1{{\left( 2x \right)}^{5}}+5{{\left( 2x \right)}^{4}}\left( 3y \right)+10{{\left( 2x \right)}^{3}}{{\left( 3y \right)}^{2}}+10{{\left( 2x \right)}^{2}}{{\left( 3y \right)}^{3}}+5{{\left( 2x \right)}^{1}}{{\left( 3y \right)}^{4}}+1{{\left( 3y \right)}^{5}}
By simplifying it further we get
\Rightarrow {{\left( 2x+3y \right)}^{5}}={{2}^{5}}{{x}^{5}}+\left( 5\centerdot {{2}^{4}}\centerdot 3\centerdot {{x}^{4}}\centerdot y \right)+\left( 10\centerdot {{2}^{3}}\centerdot {{3}^{2}}\centerdot {{x}^{3}}\centerdot {{y}^{2}} \right)+\left( 10\centerdot {{2}^{2}}\centerdot {{3}^{3}}\centerdot {{x}^{2}}\centerdot {{y}^{3}} \right)+\left( 5\centerdot 2\centerdot {{3}^{4}}\centerdot x\centerdot {{y}^{4}} \right)+{{3}^{5}}{{y}^{5}}$$$$\begin{aligned} & \Rightarrow {{\left( 2x+3y \right)}^{5}}=32{{x}^{5}}+\left( 5\centerdot 16\centerdot 3\centerdot {{x}^{4}}\centerdot y \right)+\left( 10\centerdot 8\centerdot 9\centerdot {{x}^{3}}\centerdot {{y}^{2}} \right)+\left( 10\centerdot 4\centerdot 27\centerdot {{x}^{2}}\centerdot {{y}^{3}} \right)+\left( 5\centerdot 2\centerdot 81\centerdot x\centerdot {{y}^{4}} \right)+243{{y}^{5}} \\\ & \Rightarrow {{\left( 2x+3y \right)}^{5}}=32{{x}^{5}}+\left( 240{{x}^{4}}y \right)+\left( 720{{x}^{3}}{{y}^{2}} \right)+\left( 1080{{x}^{2}}{{y}^{3}} \right)+\left( 810x{{y}^{4}} \right)+243{{y}^{5}} \\\ & \Rightarrow {{\left( 2x+3y \right)}^{5}}=32{{x}^{5}}+240{{x}^{4}}y+720{{x}^{3}}{{y}^{2}}+1080{{x}^{2}}{{y}^{3}}+810x{{y}^{4}}+243{{y}^{5}} \\\ \end{aligned}Hence, by using binomial theorem the expansion of (2x+3y)5{{\left( 2x+3y \right)}^{5}} is 32x5+240x4y+720x3y2+1080x2y3+810xy4+243y532{{x}^{5}}+240{{x}^{4}}y+720{{x}^{3}}{{y}^{2}}+1080{{x}^{2}}{{y}^{3}}+810x{{y}^{4}}+243{{y}^{5}}.

Note: In this type of question students have to remember the binomial theorem. Students have to note that to find nc0,nc1,nc2,nc3,{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}},{}^{n}{{c}_{3}},\cdots \cdots \cdots they have to use the formula ncr=n!r!(nr)!{}^{n}{{c}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}. Also in calculation of nc0,nc1,nc2,nc3,{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}},{}^{n}{{c}_{3}},\cdots \cdots \cdots students have to remember to use the formula n!=n×(n1)!=n×(n1)×(n2)!=n×(n1)×(n2)××2×1n!=n\times \left( n-1 \right)!=n\times \left( n-1 \right)\times \left( n-2 \right)!=n\times \left( n-1 \right)\times \left( n-2 \right)\times \cdots \cdots \times 2\times 1. Students have to take care in calculating the value of 5c0{}^{5}{{c}_{0}} as it includes 0!0! and they have to remember that 0!=10!=1.