Solveeit Logo

Question

Question: Solve: \( \int {\sqrt {\cot x} dx} \)...

Solve:
cotxdx\int {\sqrt {\cot x} dx}

Explanation

Solution

Hint : If we try to replace cotx\cot x with simpler terms like sinx\sin x and cosx\cos x , then we will end up complicating it. It is better to solve it using cotx\cot x itself and by using the required formulas to solve the integral.

Complete step-by-step answer :
Let us consider cotx=t\sqrt {\cot x} = t, then cotx=t2\cot x = {t^2}
On differentiating both sides of cotx=t2\cot x = {t^2} with respect to xx , we get,
\-cosec2x.dx=2t.dt cosec2x=2tdtdx cosec2x=2tdtdx  \- \cos e{c^2}x.dx = 2t.dt \\\ \Rightarrow - \cos e{c^2}x = 2t\dfrac{{dt}}{{dx}} \\\ \Rightarrow \cos e{c^2}x = - 2t\dfrac{{dt}}{{dx}} \\\
Using the formula, 1+cot2x=cosec2x1 + {\cot ^2}x = \cos e{c^2}x , in the above equation we get,
1+cot2x=2t.dtdx1 + {\cot ^2}x = - 2t.\dfrac{{dt}}{{dx}}
Since, cotx=t2\cot x = {t^2} , on substituting in the above equation, we get,
1+t4=2t.dtdx1 + {t^4} = - 2t.\dfrac{{dt}}{{dx}}
On rearranging the terms, the equation would be,
dx=2t1+t4dtdx = \dfrac{{ - 2t}}{{1 + {t^4}}}dt
Substituting the values of cotx\sqrt {\cot x} and dxdx in cotxdx\int {\sqrt {\cot x} dx} , we get,
I=t.2t1+t4dt I=2t21+t4dt  I = \int {t.\dfrac{{ - 2t}}{{1 + {t^4}}}dt} \\\ \Rightarrow I = \int {\dfrac{{ - 2{t^2}}}{{1 + {t^4}}}dt} \\\
We can take the negative sign out of the integral,
I=2t21+t4dtI = - \int {\dfrac{{2{t^2}}}{{1 + {t^4}}}dt}
To solve this integral, we add and subtract the numerator with 11 :

I=2t2+11t4+1dt =t2+1+t21t4+1dt =(t2+1t4+1+t21t4+1)dt  I = - \int {\dfrac{{2{t^2} + 1 - 1}}{{{t^4} + 1}}d} t \\\ = - \int {\dfrac{{{t^2} + 1 + {t^2} - 1}}{{{t^4} + 1}}d} t \\\ = - \int {\left( {\dfrac{{{t^2} + 1}}{{{t^4} + 1}} + \dfrac{{{t^2} - 1}}{{{t^4} + 1}}} \right)d} t \\\

Now, we split the integral into two different integrals and solve them separately.
The two integrals are:
I1=t2+1t4+1dt{I_1} = \int {\dfrac{{{t^2} + 1}}{{{t^4} + 1}}} dt and I2=t21t4+1dt{I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt

On dividing the numerator and the denominator of the first integral with t2{t^2} ,
I1=1+1t2t2+1t2dt{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt
The denominator can be written as t2+1t2=(t1t)2+2{t^2} + \dfrac{1}{{{t^2}}} = {\left( {t - \dfrac{1}{t}} \right)^2} + 2
On replacing this value in the denominator, we get,
I1=1+1t2(t1t)2+2dt{I_1} = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{{\left( {t - \dfrac{1}{t}} \right)}^2} + 2}}} dt
Let us take t1t=ut - \dfrac{1}{t} = u
Differentiating the above equation with respect to tt , we get,
(1+1t2)dt=du\left( {1 + \dfrac{1}{{{t^2}}}} \right)dt = du
On substituting these values in I1{I_1} we get,
I1=duu2+2{I_1} = \int {\dfrac{{du}}{{{u^2} + 2}}}
Applying the formula, dxa2+x2=1atan1(xa)\int {\dfrac{{dx}}{{{a^2} + {x^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right)} in I1{I_1} :
I1=12tan1(u2){I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{u}{{\sqrt 2 }}} \right)
Now we replace uu with the value of tt as we know u=t1tu = t - \dfrac{1}{t}
I1=12tan1(t1t2) I1=12tan1(t212t)   {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{t - \dfrac{1}{t}}}{{\sqrt 2 }}} \right) \\\ \Rightarrow {I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{t^2} - 1}}{{\sqrt 2 t}}} \right) \;
Now we replace tt as we know t=cotxt = \sqrt {\cot x}
I1=12tan1(cotx12cotx){I_1} = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right)

Now, we shall solve I2{I_2}
I2=t21t4+1dt{I_2} = \int {\dfrac{{{t^2} - 1}}{{{t^4} + 1}}} dt
On dividing the numerator and the denominator of the second integral with t2{t^2} ,
I2=11t2t2+1t2dt{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt
The denominator can be written as t2+1t2=(t+1t)22{t^2} + \dfrac{1}{{{t^2}}} = {\left( {t + \dfrac{1}{t}} \right)^2} - 2
I2=11t2(t+1t)22dt{I_2} = \int {\dfrac{{1 - \dfrac{1}{{{t^2}}}}}{{{{\left( {t + \dfrac{1}{t}} \right)}^2} - 2}}} dt
Let us take v=t+1tv = t + \dfrac{1}{t}
Differentiating the above equation with respect to tt , we get,
dv=(11t2)dtdv = \left( {1 - \dfrac{1}{{{t^2}}}} \right)dt
On substituting these values in I2{I_2} we get,
I2=dvv22{I_2} = \int {\dfrac{{dv}}{{{v^2} - 2}}}
Applying the formula, dxx2a2=12aln(xax+a)\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left( {\dfrac{{x - a}}{{x + a}}} \right)} in I2{I_2} :
I2=122ln(v2v+2){I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{v - \sqrt 2 }}{{v + \sqrt 2 }}} \right)
Now we replace vv with the value of tt as we know v=t+1tv = t + \dfrac{1}{t}

I2=122ln(t+1t2t+1t+2) I2=122ln(t2+12tt2+1+2t)   {I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{t + \dfrac{1}{t} - \sqrt 2 }}{{t + \dfrac{1}{t} + \sqrt 2 }}} \right) \\\ \Rightarrow {I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{{t^2} + 1 - \sqrt 2 t}}{{{t^2} + 1 + \sqrt 2 t}}} \right) \;

Now we replace tt as we know that t2=cotx{t^2} = \cot x
I2=122ln(cotx+12cotxcotx+1+2cotx){I_2} = \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)
Now we have to combine both the integrals, I=(I1+I2)I = - \left( {{I_1} + {I_2}} \right)
I=[12tan1(cotx12cotx)+122ln(cotx+12cotxcotx+1+2cotx)]+CI = - \left[ {\dfrac{1}{{\sqrt 2 }}{{\tan }^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) + \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right)} \right] + C
Therefore, cotxdx=12tan1(cotx12cotx)122ln(cotx+12cotxcotx+1+2cotx)+C\int {\sqrt {\cot x} dx} = - \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C
Where CC represents the constant of integration.
So, the correct answer is “ 12tan1(cotx12cotx)122ln(cotx+12cotxcotx+1+2cotx)+C- \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{\cot x - 1}}{{\sqrt {2\cot x} }}} \right) - \dfrac{1}{{2\sqrt 2 }}\ln \left( {\dfrac{{\cot x + 1 - \sqrt {2\cot x} }}{{\cot x + 1 + \sqrt {2\cot x} }}} \right) + C ”.

Note : Integrals are widely used in a variety of fields. Integrals, for example, are used in probability theory to calculate the probability of a random variable falling within a given range. In the substitution method in the final answer do not forget to put the original function back.