Solveeit Logo

Question

Question: Solve \(\int {\sin x\sqrt {1 - \cos 2x} } dx\)...

Solve sinx1cos2xdx\int {\sin x\sqrt {1 - \cos 2x} } dx

Explanation

Solution

Hint: In order to solve this integration we have to need some trigonometry relationship from which we can solve it easily and more accurate way we will use some relationship like (1cos2x2)=sin2x\left( {\dfrac{{1 - cos2x}}{2}} \right) = {\sin ^2}x to solve this problem.

Complete step-by-step answer:
Given that sinx1cos2xdx\int {\sin x\sqrt {1 - \cos 2x} } dx
Let (1cos2x2)=sin2x\left( {\dfrac{{1 - cos2x}}{2}} \right) = {\sin ^2}x I=sinx1cos2xdx(1)I = \int {\sin x\sqrt {1 - \cos 2x} } dx \to (1)
(1cos2x2)=sin2x\because \left( {\dfrac{{1 - cos2x}}{2}} \right) = {\sin ^2}x
By cross multiplying we get
1cos2x=2sin2x1 - \cos 2x = 2{\sin ^2}x
We can put this value in equation (1)(1) in the place of 1cos2x1 - \cos 2x
So we get
I=sinx2sin2xdxI = \int {\sin x\sqrt {2{{\sin }^2}x} } dx
Here we can take 2\sqrt 2 common so equation becomes
I=2sinxsin2xdxI = \sqrt 2 \int {\sin x\sqrt {{{\sin }^2}x} } dx
We can write sin2x\sqrt {{{\sin }^2}x} as sinx\sin x
So further solving it
I=2sinx(sinx)dx =2sin2xdx  I = \sqrt 2 \int {\sin x(\sin x)} dx \\\ = \sqrt 2 \int {{{\sin }^2}x} dx \\\
Again we can write sin2x{\sin ^2}x as (1cos2x2)\left( {\dfrac{{1 - cos2x}}{2}} \right)
I=2(1cos2x2)dxI = \sqrt 2 \int {\left( {\dfrac{{1 - cos2x}}{2}} \right)} dx
Further solving it
I=12(1cos2x)dxI = \dfrac{1}{{\sqrt 2 }}\int {\left( {1 - \cos 2x} \right)} dx
By splitting it we get
I=12dx12cos2xdxI = \dfrac{1}{{\sqrt 2 }}\int {dx - \dfrac{1}{{\sqrt 2 }}\int {\cos 2xdx} }
f(ax+b)dx=f(ax+b)a+c\because \int {f'(ax + b)dx = \dfrac{{f(ax + b)}}{a} + c}
dx=x and cos2xdx=sin2x2+c\because \int {dx = x{\text{ and }}\int {\cos 2xdx = } \dfrac{{\sin 2x}}{2}} + c
By replacing it we get
I=12(x)12(sin2x2)+cI = \dfrac{1}{{\sqrt 2 }}(x) - \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\sin 2x}}{2}} \right) + c
Where cc is the constant.
So the final term we get by solving sinx1cos2xdx\int {\sin x\sqrt {1 - \cos 2x} } dx is I=12(x)12(sin2x2)+cI = \dfrac{1}{{\sqrt 2 }}(x) - \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\sin 2x}}{2}} \right) + c

Note- Integration is a way of adding slices to find the whole. Integration can be used to find areas, volumes, central points and many useful things. But it is easiest to start with finding the area under the curve of a function.