Solveeit Logo

Question

Question: Solve \(\int{\sec \left( \log x \right)}\left[ 1+\tan \left( \log x \right) \right]dx\) (a). \(x\...

Solve sec(logx)[1+tan(logx)]dx\int{\sec \left( \log x \right)}\left[ 1+\tan \left( \log x \right) \right]dx
(a). xsec(logx)+cx\sec \left( \log x \right)+c
(b). x2sec(logx)+c\dfrac{x}{2}\sec \left( \log x \right)+c
(c). xsec(logx)+c-x\sec \left( \log x \right)+c
(d). x2sec(logx)+c\dfrac{-x}{2}\sec \left( \log x \right)+c

Explanation

Solution

Hint: Suppose logx=t\log x=t and take the base of the given log\log function as e,
So, we get
logex=t{{\log }_{e}}x=t
So, et=x{{e}^{t}}=x
Now, get the integral in terms of variable ‘t'. Use the following formula to get the answer.
ex[f(x)+f1(x)]dx=exf(x)+c\int{{{e}^{x}}}\left[ f\left( x \right)+{{f}^{1}}\left( x \right) \right]dx={{e}^{x}}f\left( x \right)+c
Where f(x) is any function.

Complete step-by-step answer:
Let us suppose the value of given integral is I. so, we get equation as
I=sec(logx)[1+tan(logx)]dxI=\int{\sec \left( \log x \right)}\left[ 1+\tan \left( \log x \right) \right]dx …………. (i)
Suppose the value of logx\log x is t. so, we get
logx=t\log x=t ………… (ii)
As we know, ax=N{{a}^{x}}=N, then logaN=x{{\log }_{a}}N=x. As by default, base of logx\log x in equation is ‘e’. so, by the above mentioned rule (ax=N,logaN=x)\left( {{a}^{x}}=N,\to {{\log }_{a}}N=x \right), we can write the equation (ii) as
logex=t{{\log }_{e}}x=t
x=etx={{e}^{t}}………….. (iii)
Now, differentiate the above expression, w.r.t ‘x’, we get
ddxx=ddx(et)\dfrac{d}{dx}x=\dfrac{d}{dx}\left( {{e}^{t}} \right)
We know ddxxn=nxn1,ddxex=ex 1=etdtdx \begin{aligned} & \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}},\dfrac{d}{dx}{{e}^{x}}={{e}^{x}} \\\ & 1={{e}^{t}}\dfrac{dt}{dx} \\\ \end{aligned}
On cross-multiplying the above equation, we get
dx=etdtdx={{e}^{t}}dt
So, we can get equation (i) as
I=sec(t)[1+tant]etdt I=etsect[1+tant]dt \begin{aligned} & I=\int{\sec \left( t \right)}\left[ 1+\tan t \right]{{e}^{t}}dt \\\ & I=\int{{{e}^{t}}}\sec t\left[ 1+\tan t \right]dt \\\ \end{aligned}
I=et[sect+tantsect]dtI=\int{{{e}^{t}}\left[ \sec t+\tan t\sec t \right]}dt………….. (iv)
Now, we know the integration of functions of type
ex(f(x)+f1(x))dx=exf(x)\int{{{e}^{x}}}\left( f\left( x \right)+{{f}^{1}}\left( x \right) \right)dx={{e}^{x}}f\left( x \right) …………… (v)
Now, compare the equation (iv) and right hand side of the equation (v). we get that secttant\sec t\tan t is derivative of sect\sec t, as we know
ddxsecx=secxtanx\dfrac{d}{dx}\sec x=\sec x\tan x ………………(vi)
On comparing equation (iv) and (v), we get
I=et[sect+tantsect]dt I=etsect+c \begin{aligned} & I=\int{{{e}^{t}}}\left[ \sec t+\tan t\sec t \right]dt \\\ & I={{{e}^{t}}}\sec t+c \\\ \end{aligned}
Now, we can put the value of ‘t’ from the equation (ii) and the value of et{{e}^{t}} from the equation (iii). So, we get value of I as
I=xsec(logx)+cI=x\sec \left( \log x \right)+c
Hence, we get value of the given integral as
sec(logx)[1+tan(logx)]dx=xsec(logx)+c\int{\sec \left( \log x \right)}\left[ 1+\tan \left( \log x \right) \right]dx=x\sec \left( \log x \right)+c

Note: One may prove the identity of ex[f(x)+f1(x)]dx=exf(x)\int{{{e}^{x}}}\left[ f\left( x \right)+{{f}^{1}}\left( x \right) \right]dx={{e}^{x}}f\left( x \right)as
We have
I=ex(f(x)+f1(x))dxI=\int{{{e}^{x}}}\left( f\left( x \right)+{{f}^{1}}\left( x \right) \right)dx
I=exf(x)dx+exf1(x)dxI=\int{{{e}^{x}}}f\left( x \right)dx+\int{{{e}^{x}}}{{f}^{1}}\left( x \right)dx
We integration by parts, which is given as
f(x)g(x)dx=f(x)g(x)dxf1(x)g(x)dxdx\int{f\left( x \right)}g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)}dx-\int{{{f}^{1}}}\left( x \right)\int{g\left( x \right)dxdx}
So, solve exf(x)dx\int{{{e}^{x}}f\left( x \right)}dx in the equation of I by integration by parts as
I=exf(x)dx+exf1(x)dx I=f(x)exdxf1(x)exdxdx+exf1(x)dx I=f(x)exf1(x)exdx+exf1(x)dx I=exf(x) \begin{aligned} & I=\int{{{e}^{x}}f\left( x \right)}dx+\int{{{e}^{x}}{{f}^{1}}\left( x \right)}dx \\\ & I=f\left( x \right)\int{{{e}^{x}}}dx-\int{{{f}^{1}}\left( x \right)\int{{{e}^{x}}}dx}dx+\int{{{e}^{x}}}{{f}^{1}}\left( x \right)dx \\\ & I=f\left( x \right){{e}^{x}}-\int{{{f}^{1}}\left( x \right){{e}^{x}}}dx+\int{{{e}^{x}}}{{f}^{1}}\left( x \right)dx \\\ & I={{e}^{x}}f\left( x \right) \\\ \end{aligned}
So, one may use this identity with these kinds of questions directly.