Solveeit Logo

Question

Question: Solve \[\int{\dfrac{{{x}^{4}}+1}{{{x}^{6}}+1}}dx\]...

Solve x4+1x6+1dx\int{\dfrac{{{x}^{4}}+1}{{{x}^{6}}+1}}dx

Explanation

Solution

In this question, to solve the given integral firstly we will add and subtract x2{{x}^{2}} in the numerator, then split the terms and find the integration of each terms separately by assuming the integrals as I1{{I}_{1}} and I2{{I}_{2}} such that I=I1+I2I={{I}_{1}}+{{I}_{2}} so that we can find the obtained result.

Complete step by step answer:
Now according to the question we have to find the integral of x4+1x6+1dx\int{\dfrac{{{x}^{4}}+1}{{{x}^{6}}+1}}dx
Add and subtract x2{{x}^{2}} in the numerator we get:
x4+1+x2x2x6+1dx\Rightarrow \int{\dfrac{{{x}^{4}}+1+{{x}^{2}}-{{x}^{2}}}{{{x}^{6}}+1}}dx
Split the terms:
x4+1x2x6+1dx+x2x6+1dx\Rightarrow \int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx+\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}
Let us assume that x4+1x2x6+1dx=I1\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx={{I}_{1}} and x2x6+1dx=I2\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}={{I}_{2}} such that I=I1+I2I={{I}_{1}}+{{I}_{2}}
Where I=x4+1x2x6+1dx+x2x6+1dxI=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx+\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}
Integrating I1{{I}_{1}} we get:
I1=x4+1x2x6+1dx\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{x}^{6}}+1}}dx
I1=x4+1x2(x2)3+13dx\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{{{({{x}^{2}})}^{3}}+{{1}^{3}}}}dx
Apply the formula a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) in the denominator:
I1=x4+1x2(x2+1)((x2)2+12x2×1)dx\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{\left( {{x}^{2}}+1 \right)\left( {{\left( {{x}^{2}} \right)}^{2}}+{{1}^{2}}-{{x}^{2}}\times 1 \right)}}dx
I1=x4+1x2(x2+1)(x4+1x2)dx\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{4}}+1-{{x}^{2}}}{\left( {{x}^{2}}+1 \right)\left( {{x}^{4}}+1-{{x}^{2}} \right)}}dx
Cancelling out the required terms we get:
I1=1(x2+1)dx\Rightarrow {{I}_{1}}=\int{\dfrac{1}{\left( {{x}^{2}}+1 \right)}}dx
I1=tan1x+c\Rightarrow {{I}_{1}}={{\tan }^{-1}}x+c
Now integrating I2{{I}_{2}} we get:
I2=x2x6+1dx\Rightarrow {{I}_{2}}=\int{\dfrac{{{x}^{2}}}{{{x}^{6}}+1}dx}
I2=x2(x3)2+12dx\Rightarrow {{I}_{2}}=\int{\dfrac{{{x}^{2}}}{{{\left( {{x}^{3}} \right)}^{2}}+{{1}^{2}}}dx}
Put x3=t{{x}^{3}}=t therefore the differential will be
ddx(x3)=ddx(t)\Rightarrow \dfrac{d}{dx}\left( {{x}^{3}} \right)=\dfrac{d}{dx}\left( t \right)
3x2=dtdx\Rightarrow 3{{x}^{2}}=\dfrac{dt}{dx}
x2dx=dt3\Rightarrow {{x}^{2}}dx=\dfrac{dt}{3}
Put the values we get:
I2=1(t)2+1dt3\Rightarrow {{I}_{2}}=\int{\dfrac{1}{{{\left( t \right)}^{2}}+1}\cdot \dfrac{dt}{3}}
I2=131(t)2+1dt\Rightarrow {{I}_{2}}=\dfrac{1}{3}\int{\dfrac{1}{{{\left( t \right)}^{2}}+1}\cdot dt}
I2=13tan1t+c\Rightarrow {{I}_{2}}=\dfrac{1}{3}\cdot {{\tan }^{-1}}t+c
I2=13tan1(x)3+c\Rightarrow {{I}_{2}}=\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+c
I=I1+I2\Rightarrow I={{I}_{1}}+{{I}_{2}}
I=(tan1x+c)+(13tan1(x)3+c)\Rightarrow I=\left( {{\tan }^{-1}}x+c \right)+\left( \dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+c \right)
I=(tan1x+13tan1(x)3+2c)\Rightarrow I=\left( {{\tan }^{-1}}x+\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+2c \right)
Let 2c=K2c=K where KK is any constant
I=(tan1x+13tan1(x)3+K)\Rightarrow I=\left( {{\tan }^{-1}}x+\dfrac{1}{3}\cdot {{\tan }^{-1}}{{\left( x \right)}^{3}}+K \right)

Note:
Integrations are essential for calculating the centre of gravity, centre of mass, and predicting the positions of the planets, among other things. Many things employ integration to find their volume, area, and core values. Integration is the reverse process of differentiation.