Solveeit Logo

Question

Question: Solve \(\int {\dfrac{{{x^3}}}{{{{({x^2} + 1)}^3}}}} dx\)...

Solve x3(x2+1)3dx\int {\dfrac{{{x^3}}}{{{{({x^2} + 1)}^3}}}} dx

Explanation

Solution

We can solve this integration by simply assuming (x2+1)({x^2} + 1)as ttand then converting the whole integration in terms of tt. Also, x2+1=t2xdx=dt{x^2} + 1 = t \Rightarrow 2xdx = dt. The numerator can be written as x2.xdx{x^2}.xdx. Replace x2{x^2} by (t1t - 1) and xdxxdxby dt2\dfrac{{dt}}{2}. In this way, the numerator and denominator will be reduced in terms of ttwhich we can solve easily.

Complete Step by Step Solution:
Suppose I=x3(x2+1)3dx................I = \int {\dfrac{{{x^3}}}{{{{({x^2} + 1)}^3}}}} dx................(equation 11)
Let x2+1=t........{x^2} + 1 = t........(equation 22)
On differentiating equation22,
2xdx=dt dx=dt2  \Rightarrow 2xdx = dt \\\ \Rightarrow dx = \dfrac{{dt}}{2} \\\
We can rewrite equation 11as I=x2.x(x2+1)3dxI = \int {\dfrac{{{x^2}.x}}{{{{({x^2} + 1)}^3}}}} dx
Replacing x2{x^2} by (t1t - 1) and xdxxdxby dt2\dfrac{{dt}}{2},
I=(t1)(t)3dt2\Rightarrow I = \int {\dfrac{{(t - 1)}}{{{{(t)}^3}}}} \dfrac{{dt}}{2}
Taking 12\dfrac{1}{2}outside the integration, as it is a constant;
I=12(t1)(t)3dt I=12(1t21t3)dt  \Rightarrow I = \dfrac{1}{2}\int {\dfrac{{(t - 1)}}{{{{(t)}^3}}}} dt \\\ \Rightarrow I = \dfrac{1}{2}\int {(\dfrac{1}{{{t^2}}}} - \dfrac{1}{{{t^3}}})dt \\\
Integration of tn{t^n}is tn+1n+1\dfrac{{{t^{n + 1}}}}{{n + 1}}.
 I=12(t2+t3)dt I=12(t2+12+1+t3+13+1+C) I=12t14t2+C1   \\\ \Rightarrow I = \dfrac{1}{2}\int {({t^{ - 2}} + {t^{ - 3}})} dt \\\ \Rightarrow I = \dfrac{1}{2}(\dfrac{{{t^{ - 2 + 1}}}}{{ - 2 + 1}} + \dfrac{{{t^{ - 3 + 1}}}}{{ - 3 + 1}} + C) \\\ \Rightarrow I = - \dfrac{1}{{2t}} - \dfrac{1}{{4{t^2}}} + {C_1} \\\ \\\
Substituting the value of tt from equation 22,
I=12(x2+1)14(x2+1)2+C1I = - \dfrac{1}{{2({x^2} + 1)}} - \dfrac{1}{{4{{({x^2} + 1)}^2}}} + {C_1}

Note:
We can also solve this question like this;
Let x=tanθx = \tan \theta
dx=sec2θdθ\Rightarrow dx = {\sec ^2}\theta d\theta
I=tan3θ(1+tan2θ)3sec2θdθ\Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{(1 + {{\tan }^2}\theta )}^3}}}} {\sec ^2}\theta d\theta
1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta
I=tan3θsec6θsec2θdθ\Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{\sec }^6}\theta }}} {\sec ^2}\theta d\theta
I=tan3θsec4θdθ\Rightarrow I = \int {\dfrac{{{{\tan }^3}\theta }}{{{{\sec }^4}\theta }}} d\theta
I=sin3θcos3θ×cos4θdθ\Rightarrow I = \int {\dfrac{{{{\sin }^3}\theta }}{{{{\cos }^3}\theta }}} \times {\cos ^4}\theta d\theta
I=sin3θ×cosθdθ\Rightarrow I = \int {{{\sin }^3}} \theta \times \cos \theta d\theta
Let sinθ=t\sin \theta = t cosθdθ=dt \Rightarrow \cos \theta d\theta = dt
Then I=t3dtI = \int {{t^3}} dt
I=t44+C\Rightarrow I = \dfrac{{{t^4}}}{4} + C As, t=sinθt = \sin \theta I=sin4θ4+C \Rightarrow I = \dfrac{{{{\sin }^4}\theta }}{4} + C
Now, we have x=tanθx = \tan \theta sinθ=x(1+x)2 \Rightarrow \sin \theta = \dfrac{x}{{\sqrt {{{(1 + x)}^2}} }}
Putting this in place of sinθ\sin \theta ,we will get the value of II.
It is possible that we get different answers by different methods but if you will solve properly, then on differentiating the result, we will end up getting the same value. Remember important formulas of integration.