Solveeit Logo

Question

Question: Solve \[\int{\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}dx}\] is equal to...

Solve x21x32x42x2+1dx\int{\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}dx} is equal to

Explanation

Solution

This question belongs to the topic of integration which is from the integration. In solving this question, we will first solve the term x21x32x42x2+1\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}} and make it simple so that the integration process will become easy. After that, we will use the substitution method of integration. After that, we will use of integration that is xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}. After solving the further process, we will get our answer.

Complete step-by-step solution:
Let us solve this question.
In this question, we have asked to do the integration. The term which we have to integrate with respect to x is x21x32x42x2+1\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}.
Now, let us first solve the term x21x32x42x2+1\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}} and make it in simple form.
We can write x21x32x42x2+1\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}} by dividing x5{{x}^{5}} to both numerator and denominator as
x21x32x42x2+1=x21x5x32x42x2+1x5\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}=\dfrac{\dfrac{{{x}^{2}}-1}{{{x}^{5}}}}{\dfrac{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}{{{x}^{5}}}}
The above can also be written as
x21x32x42x2+1=x2x51x52x42x2+1x2\Rightarrow \dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}=\dfrac{\dfrac{{{x}^{2}}}{{{x}^{5}}}-\dfrac{1}{{{x}^{5}}}}{\dfrac{\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}{{{x}^{2}}}}
The above equation can also be written as
x21x32x42x2+1=1x31x52x42x2+1x2\Rightarrow \dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}=\dfrac{\dfrac{1}{{{x}^{3}}}-\dfrac{1}{{{x}^{5}}}}{\dfrac{\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}{{{x}^{2}}}}
The above equation can also be written as
x21x32x42x2+1=1x31x52x42x2+1x4\Rightarrow \dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}=\dfrac{\dfrac{1}{{{x}^{3}}}-\dfrac{1}{{{x}^{5}}}}{\sqrt{\dfrac{2{{x}^{4}}-2{{x}^{2}}+1}{{{x}^{4}}}}}
The above equation can also be written as
x21x32x42x2+1=1x31x52x4x42x2x4+1x4\Rightarrow \dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}=\dfrac{\dfrac{1}{{{x}^{3}}}-\dfrac{1}{{{x}^{5}}}}{\sqrt{\dfrac{2{{x}^{4}}}{{{x}^{4}}}-\dfrac{2{{x}^{2}}}{{{x}^{4}}}+\dfrac{1}{{{x}^{4}}}}}
The above equation can also be written as
x21x32x42x2+1=1x31x522x2+1x4\Rightarrow \dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}=\dfrac{\dfrac{1}{{{x}^{3}}}-\dfrac{1}{{{x}^{5}}}}{\sqrt{2-\dfrac{2}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}}}
Now, let's write the term which is inside the square root as t.
t=22x2+1x4t=2-\dfrac{2}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}
Now, differentiating both sides, we get
dt=d(2)d(2x2)+d(1x4)dt=d\left( 2 \right)-d\left( \dfrac{2}{{{x}^{2}}} \right)+d\left( \dfrac{1}{{{x}^{4}}} \right)
As we know that x to the power zero is 1, so we can write
dt=2×d(x0)2×d(x2)+d(x4)\Rightarrow dt=2\times d\left( {{x}^{0}} \right)-2\times d\left( {{x}^{-2}} \right)+d\left( {{x}^{-4}} \right)
Now, using the formula d(xn)=nxn1dxd\left( {{x}^{n}} \right)=n{{x}^{n-1}}dx, we can write
dt=02×(2)×x21d(x)+(4)×x41d(x)\Rightarrow dt=0-2\times \left( -2 \right)\times {{x}^{-2-1}}d\left( x \right)+\left( -4 \right)\times {{x}^{-4-1}}d\left( x \right)
The above can also be written as
dt=4x3dx4x5dx\Rightarrow dt=4{{x}^{-3}}dx-4{{x}^{-5}}dx
dt4=x3dxx5dx\Rightarrow \dfrac{dt}{4}={{x}^{-3}}dx-{{x}^{-5}}dx
dt4=1x3dx1x5dx\Rightarrow \dfrac{dt}{4}=\dfrac{1}{{{x}^{3}}}dx-\dfrac{1}{{{x}^{5}}}dx
dt4=(1x31x5)dx\Rightarrow \dfrac{dt}{4}=\left( \dfrac{1}{{{x}^{3}}}-\dfrac{1}{{{x}^{5}}} \right)dx
Now, we can write the integration as
x21x32x42x2+1dx=(1x31x5)22x2+1x4dx=1tdt4=14tdt\int{\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}dx}=\int{\dfrac{\left( \dfrac{1}{{{x}^{3}}}-\dfrac{1}{{{x}^{5}}} \right)}{\sqrt{2-\dfrac{2}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}}}dx}=\int{\dfrac{1}{\sqrt{t}}\dfrac{dt}{4}}=\int{\dfrac{1}{4\sqrt{t}}dt}
x21x32x42x2+1dx=14tdt=14t12dt\Rightarrow \int{\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}dx}=\int{\dfrac{1}{4\sqrt{t}}dt}=\dfrac{1}{4}\int{{{t}^{-\dfrac{1}{2}}}dt}
Now, using the formula xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}, we can write
x21x32x42x2+1dx=14t12+112+1\Rightarrow \int{\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}dx}=\dfrac{1}{4}\dfrac{{{t}^{-\dfrac{1}{2}+1}}}{-\dfrac{1}{2}+1}
The above can also be written as
x21x32x42x2+1dx=14t1212=12t\Rightarrow \int{\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}dx}=\dfrac{1}{4}\dfrac{{{t}^{\dfrac{1}{2}}}}{\dfrac{1}{2}}=\dfrac{1}{2}\sqrt{t}
Now, substituting the value of t from above, we get
x21x32x42x2+1dx=1222x2+1x4\Rightarrow \int{\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}dx}=\dfrac{1}{2}\sqrt{2-\dfrac{2}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}}
Hence, we have solved x21x32x42x2+1dx\int{\dfrac{{{x}^{2}}-1}{{{x}^{3}}\sqrt{2{{x}^{4}}-2{{x}^{2}}+1}}dx} get the value as 1222x2+1x4+C\dfrac{1}{2}\sqrt{2-\dfrac{2}{{{x}^{2}}}+\dfrac{1}{{{x}^{4}}}}+C, where C is constant.

Note: We should have a better knowledge in the topic of integration to solve this type of question easily. We should know that differentiation of constant is zero. We should remember the following formulas to solve this type of question easily:
xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}
d(xn)=nxn1dxd\left( {{x}^{n}} \right)=n{{x}^{n-1}}dx