Solveeit Logo

Question

Question: Solve \( \int \dfrac{{\sin x}}{{\left( {\sin x - \cos x} \right)}}dx \)...

Solve sinx(sinxcosx)dx\int \dfrac{{\sin x}}{{\left( {\sin x - \cos x} \right)}}dx

Explanation

Solution

Hint : Here first we are rationalizing the denominator by multiplying the numerator and denominator with the denominator’s conjugate. Conjugate of the denominator is (sinx+cosx)\left( {\sin x + \cos x} \right) . And then we get a result in squares of the terms. So use the below mentioned formulas appropriately and find the integration value.
Formulas used:
1. cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x
2. sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
3. sin2x=1cos2x2{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}
4. tanxdx=logsecx+c\int \tan xdx = \log \left| {secx} \right| + c
5. secxdx=logsecx+tanx+c\int secxdx = \log \left| {secx + \tan x} \right| + c

Complete step-by-step answer :
We are given to solve the integration sinx(sinxcosx)dx\int \dfrac{{\sin x}}{{\left( {\sin x - \cos x} \right)}}dx
Multiplying the numerator and denominator of the above trigonometric expression by denominator’s conjugate (sinx+cosx)\left( {\sin x + \cos x} \right) , we get sinx(sinx+cosx)(sinxcosx)(sinx+cosx)dx\int \dfrac{{\sin x\left( {\sin x + \cos x} \right)}}{{\left( {\sin x - \cos x} \right)\left( {\sin x + \cos x} \right)}}dx
Considering sinx\sin x as ‘a’ and cosx\cos x as ‘b’, the denominator will be in the form (ab)(a+b)\left( {a - b} \right)\left( {a + b} \right) which is equal to a2b2{a^2} - {b^2}
Therefore, the expression becomes sinx(sinx+cosx)(sin2xcos2x)\int \dfrac{{\sin x\left( {\sin x + \cos x} \right)}}{{\left( {{{\sin }^2}x - {{\cos }^2}x} \right)}}
Expanding the numerator, we get
sin2x+sinxcosx(sin2xcos2x)dx\Rightarrow \int \dfrac{{{{\sin }^2}x + \sin x\cos x}}{{\left( {{{\sin }^2}x - {{\cos }^2}x} \right)}}dx
The numerator is now a sum of two terms, so the integration can be divided into two smaller integrations
sin2x(sin2xcos2x)dx+sinxcosx(sin2xcos2x)dx\Rightarrow \int \dfrac{{{{\sin }^2}x}}{{\left( {{{\sin }^2}x - {{\cos }^2}x} \right)}}dx + \int \dfrac{{\sin x\cos x}}{{\left( {{{\sin }^2}x - {{\cos }^2}x} \right)}}dx
We know that cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x and we have sin2xcos2x{\sin ^2}x - {\cos ^2}x in the denominator of the above integrations. So the value of sin2xcos2x{\sin ^2}x - {\cos ^2}x is cos2x- \cos 2x . Therefore the integrations become
sin2xcos2xdx+sinxcosxcos2xdx\Rightarrow \int \dfrac{{{{\sin }^2}x}}{{ - \cos 2x}}dx + \int \dfrac{{\sin x\cos x}}{{ - \cos 2x}}dx
And sin2x=1cos2x2{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}
(1cos2x2)cos2xdxsinxcosxcos2xdx=1cos2x2(cos2x)dxsinxcosxcos2xdx\Rightarrow - \int \dfrac{{\left( {\dfrac{{1 - \cos 2x}}{2}} \right)}}{{\cos 2x}}dx - \int \dfrac{{\sin x\cos x}}{{\cos 2x}}dx = - \int \dfrac{{1 - \cos 2x}}{{2\left( {\cos 2x} \right)}}dx - \int \dfrac{{\sin x\cos x}}{{\cos 2x}}dx
The value of sin2x=2sinxcosx\sin 2x = 2\sin x\cos x , this gives the value of sinxcosx=sin2x2\sin x\cos x = \dfrac{{\sin 2x}}{2}
1cos2x2(cos2x)dx(sin2x2)cos2xdx=1cos2x2(cos2x)dxsin2x2cos2xdx\Rightarrow - \int \dfrac{{1 - \cos 2x}}{{2\left( {\cos 2x} \right)}}dx - \int \dfrac{{\left( {\dfrac{{\sin 2x}}{2}} \right)}}{{\cos 2x}}dx = - \int \dfrac{{1 - \cos 2x}}{{2\left( {\cos 2x} \right)}}dx - \int \dfrac{{\sin 2x}}{{2\cos 2x}}dx
Taking 12\dfrac{1}{2} common out, we get
12[1cos2xcos2xdxsin2xcos2xdx]\Rightarrow \dfrac{1}{2}\left[ { - \int \dfrac{{1 - \cos 2x}}{{\cos 2x}}dx - \int \dfrac{{\sin 2x}}{{\cos 2x}}dx} \right]
Expanding the first integration into two, we get
12[1cos2xdx+cos2xcos2xdxsin2xcos2xdx]\Rightarrow \dfrac{1}{2}\left[ { - \int \dfrac{1}{{\cos 2x}}dx + \int \dfrac{{\cos 2x}}{{\cos 2x}}dx - \int \dfrac{{\sin 2x}}{{\cos 2x}}dx} \right]
The inverse of cosine is secant and the ratio of sine and cosine is tangent, then we get
12[sec2xdx+1dxtan2xdx]\Rightarrow \dfrac{1}{2}\left[ { - \int sec2xdx + \int 1dx - \int \tan 2xdx} \right]
We know that secxdx=logsecx+tanx+c\int secxdx = \log \left| {secx + \tan x} \right| + c and tanxdx=logsecx+c\int \tan xdx = \log \left| {secx} \right| + c , but here we have 2x in the place of x.
Therefore, we get
12[(logsec2x+tan2x2)+xlogsec2x2+c]\Rightarrow \dfrac{1}{2}\left[ { - \left( {\dfrac{{\log \left| {sec2x + \tan 2x} \right|}}{2}} \right) + x - \dfrac{{\log \left| {sec2x} \right|}}{2} + c} \right]
Sending 12\dfrac{1}{2} inside, we get
(logsec2x+tan2x4)+x2logsec2x4+c\Rightarrow - \left( {\dfrac{{\log \left| {sec2x + \tan 2x} \right|}}{4}} \right) + \dfrac{x}{2} - \dfrac{{\log \left| {sec2x} \right|}}{4} + c
Therefore, the value of sinx(sinxcosx)dx\int \dfrac{{\sin x}}{{\left( {\sin x - \cos x} \right)}}dx is (logsec2x+tan2x4)+x2logsec2x4+c- \left( {\dfrac{{\log \left| {sec2x + \tan 2x} \right|}}{4}} \right) + \dfrac{x}{2} - \dfrac{{\log \left| {sec2x} \right|}}{4} + c
So, the correct answer is “(logsec2x+tan2x4)+x2logsec2x4+c- \left( {\dfrac{{\log \left| {sec2x + \tan 2x} \right|}}{4}} \right) + \dfrac{x}{2} - \dfrac{{\log \left| {sec2x} \right|}}{4} + c ”.

Note : ‘c’ is known as the integration constant and the sum of constants is always a constant. So we can write only one ‘c’ for the whole integration. And lastly we have divided the integration results by 2 because, when any trigonometric function has an angle like ‘nx’, the result must be divided by n. Here the angle is 2x, so we have divided by 2. Conjugate of an expression will have a different sign from the original.