Solveeit Logo

Question

Question: Solve \(\int {\cos ecx(\cos ecx + \cot x)dx} \)....

Solve cosecx(cosecx+cotx)dx\int {\cos ecx(\cos ecx + \cot x)dx} .

Explanation

Solution

Hint: In these types of questions always remember the basic integral values like cosec2xdx=cotx  and  cotxcosecxdx=cosecx\int {\cos e{c^2}xdx = - \cot x \;and\; \int {\cot x \cos ecxdx} = - \cos ecx}. Use these formulas to find the required simplifications.

Complete step-by-step answer:
Let cosecx(cosecx+cotx)dx\int {\cos ecx(\cos ecx + \cot x)dx} be I.
So, I =cosecx(cosecx+cotx)dx\int {\cos ecx(\cos ecx + \cot x)dx} (equation 1)
Now, on simplifying equation 1, we get
I = (cosec2x+cotxcosecx)dx\int {(\cos e{c^2}x} + \cot x\cos ecx)dx
It can also be written as,
I = cosec2xdx+cotxcosecxdx\int {\cos e{c^2}xdx} + \int {\cot x\cos ecxdx} (equation 2)
We know,
cosec2xdx=cotx&cotxcosecxdx=cosecx\int {\cos e{c^2}xdx = - \cot x\& \int {\cot x\cos ecxdx} = - \cos ecx} (equation 3)
Substituting values of equation 3 in equation 2 gives us,
I = cotx cosecx + c - cotx{\text{ }} - cosecx{\text{ }} + {\text{ }}c
I= (cotx + cosecx)+c - \left( {cotx{\text{ }} + {\text{ }}cosecx} \right) + c
Hence cosecx(cosecx+cotx)dx\int {\cos ecx(\cos ecx + \cot x)dx} = (cotx + cosecx)+c - \left( {cotx{\text{ }} + {\text{ }}cosecx} \right) + c.

Note: Try to memorize as many formulas as possible because it will give you a boost to solve questions and save your time. Always simplify the question by dividing it into familiar form and then substitute it with the simplified value.