Solveeit Logo

Question

Question: Solve \[I = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx\]....

Solve I=(exloga+ealogx+ealoga)dxI = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx.

Explanation

Solution

First of all, we will separate these three terms and then integrate them individually, as we know \int {\left( {a + b} \right)} dx = \int a $$$$dx + \int b $$$$dx. After separating we will use the logarithmic properties to simplify the terms. The Logarithmic Properties we will use are:
alogb=logbaa\log b = \log {b^a} and eloga=a{e^{\log a}} = a. We usually take the base of log to be ee if it is not given. Using these properties and simplifying, we will integrate the three terms individually and then add them.
Integration Formulas to be used are:
xndx=xn+1n+1+c\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c, where ccis a constant
axdx=axloga+c\int {{a^x}} dx = \dfrac{{{a^x}}}{{\log a}} + c, where aa and ccare constants
\int a $$$$dx =ax+c = ax + c, where aa and ccare constants

Complete step by step answer:
We have I=(exloga+ealogx+ealoga)dxI = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx
Using \int {\left( {a + b} \right)} dx = \int a $$$$dx$$$$ + \int b $$$$dx, we get
I=(exloga+ealogx+ealoga)dx=exlogadx+ealogxdx+ealogadxI = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx = \int {{e^{x\log a}}} dx + \int {{e^{a\log x}}} dx + \int {{e^{a\log a}}} dx
I=exlogadx+ealogxdx+ealogadxI = \int {{e^{x\log a}}} dx + \int {{e^{a\log x}}} dx + \int {{e^{a\log a}}} dx
Letting exlogadx=I1\int {{e^{x\log a}}} dx = {I_1}, ealogxdx=I2\int {{e^{a\log x}}} dx = {I_2} and ealogadx=I3\int {{e^{a\log a}}} dx = {I_3}, we get
I=I1+I2+I3(1)I = {I_1} + {I_2} + {I_3} - - - - - (1)
First Solving I1{I_1}
I1=exlogadx{I_1} = \int {{e^{x\log a}}} dx
Using alogb=logbaa\log b = \log {b^a} in the above expression, we get
I1=elogaxdx{I_1} = \int {{e^{\log {a^x}}}} dx
Now, using eloga=a{e^{\log a}} = a, we get
I1=axdx{I_1} = \int {{a^x}} dx
Now Using the integration formula for axdx\int {{a^x}} dx,
I1=axdx=axloga+c1(2){I_1} = \int {{a^x}} dx = \dfrac{{{a^x}}}{{\log a}} + {c_1} - - - - - (2), where c1{c_1} is a constant
Solving I2{I_2} now
I2=ealogxdx{I_2} = \int {{e^{a\log x}}} dx
Using alogb=logbaa\log b = \log {b^a} in the above equation, we get
I2=elogxadx{I_2} = \int {{e^{\log {x^a}}}} dx
Now using eloga=a{e^{\log a}} = a, we get
I2=xadx{I_2} = \int {{x^a}} dx
We know, xndx=xn+1n+1+c\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c. So,
I2=xadx=xa+1a+1+c2(3){I_2} = \int {{x^a}} dx = \dfrac{{{x^{a + 1}}}}{{a + 1}} + {c_2} - - - - - (3), where c2{c_2} is a constant
Now, solving I3{I_3}
I3=ealogadx{I_3} = \int {{e^{a\log a}}} dx
Using alogb=logbaa\log b = \log {b^a} we get
I3=elogaadx{I_3} = \int {{e^{\log {a^a}}}} dx
Now using eloga=a{e^{\log a}} = a, I3{I_3} becomes
I3=aadx{I_3} = \int {{a^a}} dx
We see that aa{a^a} is a constant term. So,
I3=aadx=xaa+c3(4){I_3} = \int {{a^a}} dx = x{a^a} + {c_3} - - - - - (4), where c3{c_3} is a constant.
Now, using (1), (2), (3) and (4), we get
I=axloga+c1+xa+1a+1+c2+xaa+c3I = \dfrac{{{a^x}}}{{\log a}} + {c_1} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + {c_2} + x{a^a} + {c_3}, where c1,c2,c3{c_1},{c_2},{c_3} are constants.
Now combining three constants to one constant, we get
I=axloga+xa+1a+1+xaa+(c1+c2+c3)I = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + ({c_1} + {c_2} + {c_3})
I=axloga+xa+1a+1+xaa+cI = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + c, where c=c1+c2+c3c = {c_1} + {c_2} + {c_3}.
Hence,
I=(exloga+ealogx+ealoga)dx=axloga+xa+1a+1+xaa+cI = \int {\left( {{e^{x\log a}} + {e^{a\log x}} + {e^{a\log a}}} \right)} dx = \dfrac{{{a^x}}}{{\log a}} + \dfrac{{{x^{a + 1}}}}{{a + 1}} + x{a^a} + c, where cc is a constant term.

Note:
We need to be very thorough with the logarithmic properties. Also, while applying properties we should check whether we are applying the right property to the respective term or not. While Integrating, we usually forget to add the constant term but it is necessary and should be taken care of.