Solveeit Logo

Question

Mathematics Question on Quadratic Equations

Solve for y:2y2+6y+172=0y : 2y^{2}+6y+\frac{17}{2}=0.

A

32±i2\frac{3}{2} \pm i \sqrt{2}

B

32±i2-\frac{3}{2} \pm i \sqrt{2}

C

12±i2\frac{1}{2} \pm i \sqrt{2}

D

12±i2-\frac{1}{2} \pm i \sqrt{2}

Answer

32±i2-\frac{3}{2} \pm i \sqrt{2}

Explanation

Solution

We have, 2y2+6y+172=02y^{2}+6y+\frac{17}{2}=0 y2+3y+174=0\Rightarrow\, y^{2}+3y+\frac{17}{4}=0\quad (dividing both sides by 2) On adding and subtracting (32)2\left(\frac{3}{2}\right)^{2} , we get y2+2(y)(32)+(32)2(32)2+174=0y^{2}+2\left(y\right)\left(\frac{3}{2}\right)+\left(\frac{3}{2}\right)^{2} -\left(\frac{3}{2}\right)^{2} +\frac{17}{4}=0 (y+32)2+2=0\Rightarrow\,\left(y+\frac{3}{2}\right)^{2} +2=0 (a2+2ab+b2=(a+b)2)\left(\because\, a^{2}+2ab+b^{2}=\left(a+b\right)^2\right) (y+32)2(i2)2=0\Rightarrow\, \left(y+\frac{3}{2}\right)^{2}-\left(i\sqrt{2}\right)^{2}=0 (y+32+i2)(y+32i2)=0\Rightarrow\, \left(y+\frac{3}{2}+i\sqrt{2}\right)\left(y+\frac{3}{2}-i \sqrt{2}\right)=0 (a2b2=(a+b)(ab))\left(\because\, a^{2}-b^{2}=\left(a+b\right)\left(a-b\right)\right) Either y+32+i2=0y+\frac{3}{2}+i \sqrt{2}=0 or y+32i2=0y+\frac{3}{2}-i\sqrt{2}=0 y=32i2\Rightarrow\, y=-\frac{3}{2}-i\sqrt{2} or y=32+i2y=-\frac{3}{2}+i\sqrt{2} Hence, roots of the given equation are 32i2-\frac{3}{2}-i\sqrt{2} and 32+i2-\frac{3}{2}+i \sqrt{2}.