Question
Question: Solve for x: \[{{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x,x>0\] A....
Solve for x: tan−1(1+x1−x)=21tan−1x,x>0
A. 3
B. 1
C. −1
D. 31
Solution
We first try to assume the variable of the given equation where tan−1(1+x1−x)=21tan−1x=α. Using the theorem of inverse, we get the values for the (1+x1−x)=tanα and x=tan(2α). Then we use the multiple angles to find the formula tan(2α)=1−tan2α2tanα. We put the values and find the solution for x.
Complete step-by-step solution:
Let’s assume tan−1(1+x1−x)=21tan−1x=α. We use the concept of inverse theorem of trigonometric functions to find tan−1(1+x1−x)=α and 21tan−1x=α.
So, (1+x1−x)=tanα and x=tan(2α).
We now use the concept of multiple angles to find the formula tan(2α)=1−tan2α2tanα.
We put the values and get
tan(2α)=1−tan2α2tanα⇒x=1−(1+x1−x)22(1+x1−x).
We now multiply with (1+x)2 to get x=(1+x)2−(1−x)22(1−x)(1+x)=4x2(1−x2).
Simplifying we get 2x2=(1−x2) which gives 3x2=1.
We now solve the quadratic equation to get