Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Solve for x,tan1(1/x)=π+tan1x,0<x<1x,\,\,{{\tan }^{-1}}(1/x)=\pi +{{\tan }^{-1}}x,\,\,0 < x < 1

A

notdefinednot\, defined

B

3\sqrt{3}

C

±1\pm \,1

D

None of the above

Answer

notdefinednot\, defined

Explanation

Solution

We have, tan1(1x)=π+tan1x,0<x<1{{\tan }^{-1}}\left( \frac{1}{x} \right)=\pi +{{\tan }^{-1}}x,\,0 < x < 1
\Rightarrow tan1(1x)tan1x=π{{\tan }^{-1}}\left( \frac{1}{x} \right)-{{\tan }^{-1}}x=\pi
\Rightarrow tan1(1xx1+1x.x)=π{{\tan }^{-1}}\left( \frac{\frac{1}{x}-x}{1+\frac{1}{x}.x} \right)=\pi
\Rightarrow tan1(1x2x(1+1))=π{{\tan }^{-1}}\left( \frac{1-{{x}^{2}}}{x(1+1)} \right)=\pi
\Rightarrow 1x22x=tanπ\frac{1-{{x}^{2}}}{2x}=\tan \pi
\Rightarrow 1x22x=0\frac{1-{{x}^{2}}}{2x}=0
\Rightarrow 1x2=0x2=1x=±11-{{x}^{2}}=0\,\Rightarrow {{x}^{2}}=1\,\Rightarrow x=\pm 1 but given, 0<x<10 < x < 1