Solveeit Logo

Question

Question: Solve for x, \[\left( -\pi \le x\le \pi \right)\], the equation: \(2\left( \cos x+\cos 2x \right)+\s...

Solve for x, (πxπ)\left( -\pi \le x\le \pi \right), the equation: 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx.2\left( \cos x+\cos 2x \right)+\sin 2x\left( 1+2\cos x \right)=2\sin x.
How many distinct values of x satisfy the equation in the above range?
(a) 2
(b) 4
(c) 5
(d) 6

Explanation

Solution

Hint: Take all the terms to the left hand side (L.H.S). Apply the half angle formula to convert sin2x\sin 2x into 2sinxcosx2\sin x\cos x. Now, take 2sinx2\sin x common from the last two terms and use the conversion: 2cos2x1=cos2x2{{\cos }^{2}}x-1=\cos 2x to simplify the terms. Now take all the common terms together and write the equation as a product of trigonometric terms. Equate each term equal to zero and use the formula for the general solution of the trigonometric functions. Use the relation: cosx=0x=(2n+1)π2\cos x=0\Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{2}, where n is any integer. Remember that we have to choose such values of n for which, (πxπ)\left( -\pi \le x\le \pi \right).

Complete step-by-step answer:
We have been given: 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx2\left( \cos x+\cos 2x \right)+\sin 2x\left( 1+2\cos x \right)=2\sin x. Taking all the terms to L.H.S, we have,
2(cosx+cos2x)+sin2x(1+2cosx)2sinx=02\left( \cos x+\cos 2x \right)+\sin 2x\left( 1+2\cos x \right)-2\sin x=0
Using the formula: sin2x=2sinxcosx\sin 2x=2\sin x\cos x, we get,
2(cosx+cos2x)+2sinxcosx(1+2cosx)2sinx=02\left( \cos x+\cos 2x \right)+2\sin x\cos x\left( 1+2\cos x \right)-2\sin x=0
Taking 2sin2x2\sin 2x common from the 2nd and 3rd term, we get,
\begin{aligned} & 2\left( \cos x+\cos 2x \right)+2\sin x\left\\{ \cos x\left( 1+2\cos x \right)-1 \right\\}=0 \\\ & \Rightarrow 2\left( \cos x+\cos 2x \right)+2\sin x\left\\{ \cos x+2{{\cos }^{2}}x-1 \right\\}=0 \\\ \end{aligned}
Using the identity: 2cos2x1=cos2x2{{\cos }^{2}}x-1=\cos 2x, we have,
\begin{aligned} & 2\left( \cos x+\cos 2x \right)+2\sin x\left\\{ \cos x\left( 1+2\cos x \right)-1 \right\\}=0 \\\ & \Rightarrow 2\left( \cos x+\cos 2x \right)+2\sin x\left\\{ \cos x+\cos 2x \right\\}=0 \\\ \end{aligned}
Dividing both sides by 2, we get,
\begin{aligned} & \left( \cos x+\cos 2x \right)+\sin x\left\\{ \cos x+\cos 2x \right\\}=0 \\\ & \Rightarrow \left( \cos x+\cos 2x \right)\left( 1+\sin x \right)=0 \\\ \end{aligned}
Using the formula: cosa+cosb=2cos(a+b2)cos(ab2)\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right), we get,
2cos(x+2x2)cos(x2x2)(1+sinx)=0 2cos(3x2)cos(x2)(1+sinx)=0 \begin{aligned} & 2\cos \left( \dfrac{x+2x}{2} \right)\cos \left( \dfrac{x-2x}{2} \right)\left( 1+\sin x \right)=0 \\\ & \Rightarrow 2\cos \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{-x}{2} \right)\left( 1+\sin x \right)=0 \\\ \end{aligned}
We know that, cos(a)=cosa\cos \left( -a \right)=\cos a, therefore,
2cos(3x2)cos(x2)(1+sinx)=0 cos(3x2)cos(x2)(1+sinx)=0 \begin{aligned} & 2\cos \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{x}{2} \right)\left( 1+\sin x \right)=0 \\\ & \Rightarrow \cos \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{x}{2} \right)\left( 1+\sin x \right)=0 \\\ \end{aligned}
Substituting each term equal to 0, we get,
(i) Consider cos(3x2)=0\cos \left( \dfrac{3x}{2} \right)=0
Using the formula for general solution: cosx=0x=(2n+1)π2\cos x=0\Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{2}, we get,
3x2=(2n+1)π2 x=(2n+1)π3 \begin{aligned} & \dfrac{3x}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\\ & \Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{3} \\\ \end{aligned}
Now, we must take such integer values of n for which (πxπ)\left( -\pi \le x\le \pi \right). Therefore,
For n = 0, we have,
x=π3x=\dfrac{\pi }{3}
For n = -1, we have,
x=(2×(1)+1)π3 x=(2+1)π3 x=π3 \begin{aligned} & x=\left( 2\times \left( -1 \right)+1 \right)\dfrac{\pi }{3} \\\ & \Rightarrow x=\left( -2+1 \right)\dfrac{\pi }{3} \\\ & \Rightarrow x=\dfrac{-\pi }{3} \\\ \end{aligned}
For n = -2, we have,
x=(2×(2)+1)π3 x=(4+1)π3 x=3×π3 x=π \begin{aligned} & \Rightarrow x=\left( 2\times \left( -2 \right)+1 \right)\dfrac{\pi }{3} \\\ & \Rightarrow x=\left( -4+1 \right)\dfrac{\pi }{3} \\\ & \Rightarrow x=-3\times \dfrac{\pi }{3} \\\ & \Rightarrow x=-\pi \\\ \end{aligned}
Now, there are no more values of n for which (πxπ)\left( -\pi \le x\le \pi \right).
(ii) Considering cos(x2)=0\cos \left( \dfrac{x}{2} \right)=0
Using the formula for general solution: cosx=0x=(2n+1)π2\cos x=0\Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{2}, we get,
x2=(2n+1)π2 x=(2n+1)π \begin{aligned} & \dfrac{x}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\\ & \Rightarrow x=\left( 2n+1 \right)\pi \\\ \end{aligned}
Now, we must take such integer values of n for which (πxπ)\left( -\pi \le x\le \pi \right). Therefore,
For n = 0, we have,
x=πx=\pi
For n = -1, we have,
x=(2×(1)+1)π x=(2+1)π x=π \begin{aligned} & x=\left( 2\times \left( -1 \right)+1 \right)\pi \\\ & \Rightarrow x=\left( -2+1 \right)\pi \\\ & \Rightarrow x=-\pi \\\ \end{aligned}
Now, there are no more values of n for which (πxπ)\left( -\pi \le x\le \pi \right).
(iii) Considering (1+sinx)=0\left( 1+\sin x \right)=0
sinx=1\Rightarrow \sin x=-1
The only value for which sinx=1\sin x=-1 in the domain (πxπ)\left( -\pi \le x\le \pi \right) is x=π2x=\dfrac{-\pi }{2}.
Now, we can see that the solution x=πx=\pi is common in the 1st and 2nd case. Therefore, we will count it as one solution. Therefore, total solutions are: π,π3,π2,π3 and π-\pi ,\dfrac{-\pi }{3},\dfrac{-\pi }{2},\dfrac{\pi }{3}\text{ and }\pi, which are 5 in numbers.
Hence, option (c) is the correct answer.

Note: One may note that we are not finding a general solution but the solutions in the domain: (πxπ)\left( -\pi \le x\le \pi \right). So, we have to consider each case and find their solutions. In the above solution, there were three cases and we have found the values of x for those three cases one by one. Remember that if you are getting a similar value of x in two or more cases, count them together as one solution.