Question
Mathematics Question on Ratio
Solve for x: x4−2x+35=3.
Step 1: Find the common denominator The denominator is x(2x+3). Rewrite: x(2x+3)4(2x+3)−5x=3. Step 2: Simplify the numerator x(2x+3)8x+12−5x=3⟹x(2x+3)3x+12=3. Step 3: Cross-multiply 3x+12=3x(2x+3)⟹3x+12=6x2+9x. Rearrange: 6x2+6x−12=0. Simplify: x2+x−2=0. Step 4: Solve the quadratic equation Factorize: x2+x−2=(x+2)(x−1)=0. x=−2orx=1. Step 5: Check solutions For x=−2, 2x+3=−1, so the denominator is undefined. Therefore, x=−2 is not valid. Correct Answer: x=1.
Solution
Step 1: Find the common denominator The denominator is x(2x+3). Rewrite: x(2x+3)4(2x+3)−5x=3. Step 2: Simplify the numerator x(2x+3)8x+12−5x=3⟹x(2x+3)3x+12=3. Step 3: Cross-multiply 3x+12=3x(2x+3)⟹3x+12=6x2+9x. Rearrange: 6x2+6x−12=0. Simplify: x2+x−2=0. Step 4: Solve the quadratic equation Factorize: x2+x−2=(x+2)(x−1)=0. x=−2orx=1. Step 5: Check solutions For x=−2, 2x+3=−1, so the denominator is undefined. Therefore, x=−2 is not valid. Correct Answer: x=1.