Solveeit Logo

Question

Question: Solve for x and y: \(\dfrac{15}{x-y}+\dfrac{22}{x+y}=5,\dfrac{40}{x-y}+\dfrac{55}{x+y}=13,\) \(x\ne ...

Solve for x and y: 15xy+22x+y=5,40xy+55x+y=13,\dfrac{15}{x-y}+\dfrac{22}{x+y}=5,\dfrac{40}{x-y}+\dfrac{55}{x+y}=13, xyx\ne y and xyx\ne -y.
A. x=8 and y=3x=-8\text{ and }y=-\text{3}
B. x=8 and y=8x=8\text{ and y=8}
C. x=3 and y=3x=3\text{ and y=3}
D. x=8 and y=3x=8\text{ and y=3}

Explanation

Solution

To solve this question first we will convert the given equation into a linear equation into two variables. Then we solve the obtained equations by using the elimination method. We eliminate one of the variables from equations and find the value of another variable. Then substitute the value in one of the equations to get the value of the variable.

Complete answer:
We have been given two equations 15xy+22x+y=5,40xy+55x+y=13,\dfrac{15}{x-y}+\dfrac{22}{x+y}=5,\dfrac{40}{x-y}+\dfrac{55}{x+y}=13,
Let us assume 1xy=u\dfrac{1}{x-y}=u and 1x+y=v\dfrac{1}{x+y}=v.
Let us take the first equation 15xy+22x+y=5\dfrac{15}{x-y}+\dfrac{22}{x+y}=5
Now substituting the values in the given equation we get
15u+22v=5............(i)15u+22v=5............(i)
Let us take the second equation 40xy+55x+y=13\dfrac{40}{x-y}+\dfrac{55}{x+y}=13
Now substituting the values in the equation we get
40u+55v=13............(ii)40u+55v=13............(ii)
Now, to solve equations we multiply the equation (i) from 40 and equation (ii) from 15, we get
15×40u+22×40v=5×40 600u+880v=200.........(iii) \begin{aligned} & \Rightarrow 15\times 40u+22\times 40v=5\times 40 \\\ & \Rightarrow 600u+880v=200.........(iii) \\\ \end{aligned}
40×15u+55×15v=13×15 600u+825v=195...........(iv) \begin{aligned} & \Rightarrow 40\times 15u+55\times 15v=13\times 15 \\\ & \Rightarrow 600u+825v=195...........(iv) \\\ \end{aligned}
Now, subtract equation (iv) from equation (iii), we get
(600u+880v)(600u+825v)=200195\Rightarrow \left( 600u+880v \right)-\left( 600u+825v \right)=200-195
Now, simplifying further we get
600u+880v600u825v=200195 55v=5 v=555 v=111 \begin{aligned} & \Rightarrow 600u+880v-600u-825v=200-195 \\\ & \Rightarrow 55v=5 \\\ & \Rightarrow v=\dfrac{5}{55} \\\ & \Rightarrow v=\dfrac{1}{11} \\\ \end{aligned}
Now, substituting the value of vv in equation (i) we get
15u+22×111=5 15u+2=5 15u=52 15u=3 u=315 u=15 \begin{aligned} & \Rightarrow 15u+22\times \dfrac{1}{11}=5 \\\ & \Rightarrow 15u+2=5 \\\ & \Rightarrow 15u=5-2 \\\ & \Rightarrow 15u=3 \\\ & \Rightarrow u=\dfrac{3}{15} \\\ & \Rightarrow u=\dfrac{1}{5} \\\ \end{aligned}
Now, we have 1xy=u\dfrac{1}{x-y}=u and 1x+y=v\dfrac{1}{x+y}=v.
Substituting the values of u&vu\And v in the above equations we get
1xy=15 xy=5.........(v) \begin{aligned} & \Rightarrow \dfrac{1}{x-y}=\dfrac{1}{5} \\\ & \Rightarrow x-y=5.........(v) \\\ \end{aligned}
And
1x+y=111 x+y=11........(vi) \begin{aligned} & \Rightarrow \dfrac{1}{x+y}=\dfrac{1}{11} \\\ & \Rightarrow x+y=11........(vi) \\\ \end{aligned}
Now, add both the equation (v) and equation (vi), we get
(xy)+(x+y)=5+11 2x=16 x=162 x=8 \begin{aligned} & \Rightarrow \left( x-y \right)+\left( x+y \right)=5+11 \\\ & \Rightarrow 2x=16 \\\ & \Rightarrow x=\dfrac{16}{2} \\\ & \Rightarrow x=8 \\\ \end{aligned}
Now, substituting the value of x in equation (vi) we get
8+y=11 y=118 y=3 \begin{aligned} & \Rightarrow 8+y=11 \\\ & \Rightarrow y=11-8 \\\ & \Rightarrow y=3 \\\ \end{aligned}
So, we get the values x=8&y=3x=8\And y=3

Option D is the correct answer.

Note:
Alternatively one can directly solve the pair of equations but conversion of equation and using the substitution method to solve the equations is the easiest way. Here we use the elimination method to solve the equations. Students can use a substitution method also.