Question
Question: Solve for x: \[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfr...
Solve for x:
2tan−1(sinx)=tan−1(2secx),x=2π
Solution
Hint: Apply the tan on both the left hand side and right hand side. Now apply the formula for tan2θon the left hand side. Now use inverse trigonometric functions that is tan(tan−1θ)=θand use basic trigonometric identities to get tanxand write the general solution of the equation tanx=k.
Complete step-by-step answer:
Given that 2tan−1(sinx)=tan−1(2secx),x=2π
Applying tan on both left hand side and right hand side we will get,
tan(2tan−1(sinx))=tan(tan−1(2secx)) . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that the formula for tan2θ is given by tan2θ=1−tan2θ2tanθ
⇒1−tan2(tan−1(sinx))2tan(tan−1(sinx))=2secx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
⇒1−sin2x2sinx=2secx. . . . . . . . . . . . . . . . . . . . . . . . . (3)
⇒cos2xsinx=cosx1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
⇒tanx=1
The general solution of tanx=kis nπ+α
⇒x=nπ+4π
Note: The basic trigonometric identity is sin2x+cos2x=1. Note that in the general solution of the equation tanx=kwhich is nπ+αand value αshould be in the principal solution that is α∈(2−π,2π). Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.