Solveeit Logo

Question

Question: Solve for the value of the integral, given as \[\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x ...

Solve for the value of the integral, given as ax[log x + log a log(xxex)]dx\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x + log a log}}\left( {\dfrac{{{{\text{x}}^{\text{x}}}}}{{{{\text{e}}^{\text{x}}}}}} \right)} \right]{\text{dx}}=?
A. x(log x - 1) B. ax.x(log x - 1) C. ax.x(log x + 1) D. ax.(log x - 1)  {\text{A}}{\text{. x}}\left( {{\text{log x - 1}}} \right) \\\ {\text{B}}{\text{. }}{{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x - 1}}} \right) \\\ {\text{C}}{\text{. }}{{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x + 1}}} \right) \\\ {\text{D}}{\text{. }}{{\text{a}}^{\text{x}}}.\left( {{\text{log x - 1}}} \right) \\\

Explanation

Solution

Hint: In order to compute the integral, we divide it into parts and use relevant formulae such as integral by-parts and formula for integral of log x and ax{{\text{a}}^{\text{x}}} and use product rule of differentiation when necessary.

Complete step-by-step answer:
Given Data,
ax[log x + log a log(xxex)]dx\int {{{\text{a}}^{\text{x}}}} \left[ {{\text{log x + log a log}}\left( {\dfrac{{{{\text{x}}^{\text{x}}}}}{{{{\text{e}}^{\text{x}}}}}} \right)} \right]{\text{dx}},
To simplify, we know for a term log xk{{\text{x}}^{\text{k}}} can be written as, k log x, Also we know log(ab)=loga - logb{\text{log}}\left( {\dfrac{{\text{a}}}{{\text{b}}}} \right) = {\text{loga - logb}} we use it in the above equation we get
=ax[logx + loga.(logx - loge)x]dx =ax[logx + loga.x(logx - loge)]dx  = \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.}}{{\left( {\log {\text{x - loge}}} \right)}^{\text{x}}}} \right]{\text{dx}} \\\ = \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - loge}}} \right)} \right]{\text{dx}} \\\
Now we know log e = 1, i.e. our equation becomes
=ax[logx + loga.x(logx - 1)]dx =[axlogx + axloga. x(logx - 1)]dx =axlogx dx + axloga. x(logx - 1) dx - - - - - - (2)  = \int {{{\text{a}}^{\text{x}}}} \left[ {{\text{logx + loga}}{\text{.x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}} \\\ = \int {\left[ {{{\text{a}}^{\text{x}}}{\text{logx + }}{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} \right]{\text{dx}}} \\\ = \int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - - - (2)}} \\\
Now let us solve the second term of the equation,
i.e. axloga. x(logx - 1) dx - - - - (1)\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx - - - - (1)}}
The above equation is of the formuv\int {{\text{uv}}} , we know uv\int {{\text{uv}}} = uvu’v{\text{u}}\int {\text{v}} - \int {{\text{u'}}} \int {\text{v}}
Comparing the formula with equation (1), we consider
u = x (log x - 1) and v = ax{{\text{a}}^{\text{x}}}log a
u’ = ddx(x(logx - 1))\Rightarrow {\text{u' = }}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{x}}\left( {{\text{logx - 1}}} \right)} \right)
It is in the form ofddx(uv)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right), which is given as ddx(uv)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{uv}}} \right)=uddx(v)+vddx(u){\text{u}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{v}} \right) + {\text{v}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{u}} \right), hence the equation becomes
u’ = (log x - 1)ddx(x)+xddx(log x - 1){\text{u' = }}\left( {{\text{log x - 1}}} \right)\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {\text{x}} \right) + {\text{x}}\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{log x - 1}}} \right)
u’ = (logx - 1)+x(1x0) u’ = logx - 1 + 1 u’ = logx  \Rightarrow {\text{u' = }}\left( {{\text{logx - 1}}} \right) + {\text{x}}\left( {\dfrac{1}{{\text{x}}} - 0} \right) \\\ \Rightarrow {\text{u' = logx - 1 + 1}} \\\ \Rightarrow {\text{u' = logx}} \\\ --- Asddx(logx)=1x\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{\text{logx}}} \right) = \dfrac{1}{{\text{x}}}.
Now our equation (1) becomes
axloga. x(logx - 1) dx\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}
= uv\int {{\text{uv}}}
= x(log x - 1)axlogalog xaxloga dx= {\text{ x}}\left( {{\text{log x - 1}}} \right)\int {{{\text{a}}^{\text{x}}}{\text{loga}}} - \int {{\text{log x}}} \int {{{\text{a}}^{\text{x}}}\log {\text{a}}} {\text{ dx}}
Now we knowax=axlog a\int {{{\text{a}}^{\text{x}}}} = \dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}, hence the equation becomes
= x(log x - 1) axlog a.log a - log x.axlog a.log a  = x(log x - 1) ax - log x.axdx  = {\text{ x}}\left( {{\text{log x - 1}}} \right){\text{ }}\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a - }}\int {{\text{log x}}} .\dfrac{{{{\text{a}}^{\text{x}}}}}{{{\text{log a}}}}{\text{.log a}} \\\ {\text{ = x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}} \\\
Now substitute the obtained value in equation (2) we get,
axlogx dx + axloga. x(logx - 1) dx\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + }}\int {{{\text{a}}^{\text{x}}}{\text{loga}}{\text{. x}}\left( {\log {\text{x - 1}}} \right)} {\text{ dx}}= axlogx dx + x(log x - 1) ax - log x.axdx\int {{{\text{a}}^{\text{x}}}{\text{logx}}} {\text{ dx + x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}{\text{ - }}\int {{\text{log x}}} .{{\text{a}}^{\text{x}}}{\text{dx}}
x(log x - 1) ax{\text{x}}\left( {{\text{log x - 1}}} \right){\text{ }}{{\text{a}}^{\text{x}}}
ax.x(log x - 1){{\text{a}}^{\text{x}}}.{\text{x}}\left( {{\text{log x - 1}}} \right)
Hence Option B is the correct answer.

Note: In order to solve this type of question the key is to perform simplification on the given equation using logarithmic identities. A good knowledge in formulas of integration and differentiation of terms like log x, ax{{\text{a}}^{\text{x}}}and similar terms is appreciated. Solving the equation by splitting it makes it simpler.