Solveeit Logo

Question

Quantitative Ability and Data Interpretation Question on Basics of Numbers

Solve for the number of integral values of x:(x215x+47)(x13)(x8)<0x: \frac{(x^2-15x+47)(x-13)}{(x-8)}<0.

A

5

B

6

C

7

D

8

E

3

Answer

5

Explanation

Solution

(x215x+47)(x13)(x8)<0\frac{(x^2-15x+47)(x-13)}{(x-8)}<0 .… (1)

(x215x+47)(x13)(x8)(x8)2<0\frac{(x^2-15x+47)(x-13)(x-8)}{(x-8)^2}<0

As (x8)20(x-8)^2≥0

[The denominator is 00 when x=8x=8, which is not allowed.]

(x215x+47)(x13)(x8)<0(x^2-15x+47)(x-13)(x-8)<0

Let us try to find the value of x215x+47x^2-15x+47.

x215x+2254+472254⇒ x^2-15x+\frac{225}{4}+47-\frac{225}{4}

(x152)2+472254⇒ (x-\frac{15}{2})^2+47-\frac{225}{4}

(x152)2374⇒ (x-\frac{15}{2})^2-\frac{37}{4}

It is always positive when the value of x>10x > 10 and x<5x < 5.

The critical points for (x13)(x8)<0(x-13)(x-8)<0 are 1313 and 88.

Case I: For x13x≥13,

The value (x13)(x8)(x-13)(x-8) is either zero or positive.

(x152)2374(x-\frac{15}{2})^2-\frac{37}4 is always positive.

So, (x215x+47)(x13)(x8)(x^2-15x+47)(x-13)(x-8) is always zero or positive.

Hence, there is no solution for this range.

Case II: For 8<x<138<x<13,

The value of (x13)(x8)(x-13)(x-8) is always negative.

But the value of (x152)2374(x-\frac{15}{2})^2-\frac{37}4 is always positive when the value of x>10x > 10 and x<5x < 5.

Thus, the values possible are x=11,12x = 11, 12.

Case III: For x8x≤8,

The value of (x13)(x8)(x-13)(x-8) is either zero or positive.

But the value of (x152)2374(x-\frac{15}{2})^2-\frac{37}{4} is always negative when the values of xx are 5,65, 6, and 77.

The number of integral solutions is 5, and these values are 5,6,7,115, 6, 7, 11, and 1212.

Hence, option A is the correct answer.