Solveeit Logo

Question

Question: Solve for the general value of theta \(\theta \) : \(\tan \left( \theta \right)\tan \left( {{{120}...

Solve for the general value of theta θ\theta :
tan(θ)tan(1200θ)tan(1200+θ)=13\tan \left( \theta \right)\tan \left( {{{120}^0} - \theta } \right)\tan \left( {{{120}^0} + \theta } \right) = \dfrac{1}{{\sqrt 3 }} is;

Explanation

Solution

The above question deals with the simplification of trigonometric functions using standard identities along with some basic algebraic rules. To proceed with the question , the standard formulae of tangent function should be kept in mind . Notice here that the formula for tangent function can be used for simplification i.e. tan(x+y)=tanx+tany1tanxtany\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}} and tan(xy)=tanxtany1+tanxtany\tan \left( {x - y} \right) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}.

Complete step by step answer:
The given question is;
tan(θ)tan(1200θ)tan(1200+θ)=13\Rightarrow \tan \left( \theta \right)\tan \left( {{{120}^0} - \theta } \right)\tan \left( {{{120}^0} + \theta } \right) = \dfrac{1}{{\sqrt 3 }}
Expanding tan(1200+θ)\tan \left( {{{120}^0} + \theta } \right) and tan(1200+θ)\tan \left( {{{120}^0} + \theta } \right) by the formulae defined above, we get;
tanθ[tan(1200)+tanθ1tan(1200)tanθ][tan(1200)tanθ1+tan(1200)tanθ]=13\Rightarrow \tan \theta \left[ {\dfrac{{\tan \left( {{{120}^0}} \right) + \tan \theta }}{{1 - \tan \left( {{{120}^0}} \right)\tan \theta }}} \right]\left[ {\dfrac{{\tan \left( {{{120}^0}} \right) - \tan \theta }}{{1 + \tan \left( {{{120}^0}} \right)\tan \theta }}} \right] = \dfrac{1}{{\sqrt 3 }} ......(1)......\left( 1 \right)
We know that , tan(1200)=tan(1800600)\tan \left( {{{120}^0}} \right) = \tan \left( {{{180}^0} - {{60}^0}} \right)
By the formula tan(180θ)=tanθ\tan \left( {180 - \theta } \right) = - \tan \theta
tan(1800600)=tan(600)=3\therefore \tan \left( {{{180}^0} - {{60}^0}} \right) = - \tan \left( {{{60}^0}} \right) = - \sqrt 3
(tan600=3)\left( {\because \tan {{60}^0} = \sqrt 3 } \right)
Replacing the value of tan(1200)\tan \left( {{{120}^0}} \right) in equation (1)\left( 1 \right), we get;
tanθ[3+tanθ1+3tanθ][3tanθ13tanθ]=13\Rightarrow \tan \theta \left[ {\dfrac{{ - \sqrt 3 + \tan \theta }}{{1 + \sqrt 3 \tan \theta }}} \right]\left[ {\dfrac{{ - \sqrt 3 - \tan \theta }}{{1 - \sqrt 3 \tan \theta }}} \right] = \dfrac{1}{{\sqrt 3 }}
The above equation resembles with the formula of a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)(a - b)
Therefore, it can be reduced to;
tanθ[(3)2(tan2θ)1(3tanθ)2]=13\Rightarrow \tan \theta \left[ {\dfrac{{{{\left( { - \sqrt 3 } \right)}^2} - \left( {{{\tan }^2}\theta } \right)}}{{1 - {{\left( {\sqrt 3 \tan \theta } \right)}^2}}}} \right] = \dfrac{1}{{\sqrt 3 }}
Simplifying the above equation;
tanθ[3tan2θ13tan2θ]=13\Rightarrow \tan \theta \left[ {\dfrac{{3 - {{\tan }^2}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right] = \dfrac{1}{{\sqrt 3 }}
Multiplying tanθ\tan \theta inside, we get;
3tanθtan3θ13tan2θ=13\Rightarrow \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} = \dfrac{1}{{\sqrt 3 }}
By the formula, tan3θ=3tanθtan2θ13tan2θ\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^2}\theta }}{{1 - 3{{\tan }^2}\theta }}
Applying the above formula;
tan(3θ)=13\Rightarrow \tan \left( {3\theta } \right) = \dfrac{1}{{\sqrt 3 }}
We know that, tan600=tan(π6)=13\tan {60^0} = \tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{{\sqrt 3 }}
tan3θ=tan(π6)\Rightarrow \tan 3\theta = \tan \left( {\dfrac{\pi }{6}} \right) ......(2)......\left( 2 \right)
According to the general solution condition of tangent function;
tanx=tanϕ\Rightarrow \tan x = \tan \phi
x=nπ+ϕ\Rightarrow x = n\pi + \phi , where nzn \in z ( zz is set of integers)
(The general solution determines the value of xx which satisfies the equation)
Therefore equation (2)\left( 2 \right) reduces to;
3θ=nπ+π6\Rightarrow 3\theta = n\pi + \dfrac{\pi }{6} where nzn \in z
Simplifying further:
θ=nπ3+π18\Rightarrow \theta = \dfrac{{n\pi }}{3} + \dfrac{\pi }{{18}} where nzn \in z
Or θ\theta can also be written as;
θ=(6n+1)π18\Rightarrow \theta = \left( {6n + 1} \right)\dfrac{\pi }{{18}} where nzn \in z
Therefore the correct answer for this question is θ=(6n+1)π18\theta = \left( {6n + 1} \right)\dfrac{\pi }{{18}} where nzn \in z .

Note: To solve this question, the concept of general solution of tangent function is used i.e. For
tanx=tanϕ\tan x = \tan \phi , the general solution is given by x=nπ+ϕx = n\pi + \phi . Although one condition is there i.e. xx and ϕ\phi can not take the value as π2\dfrac{\pi }{2} , because the value of tangent function for π2\dfrac{\pi }{2} is not defined . There is also a concept of principal solution of a trigonometric identity which covers all values from 0 to 36000{\text{ to 36}}{{\text{0}}^0} or
00 to 2π{0^0}{\text{ to 2}}\pi since all the trigonometric functions repeat themselves after a certain time
period. The principal solution involves the variables while the general solution involves the integer nn .