Solveeit Logo

Question

Question: solve for the area of the triangle of root 2 root 2 1 - root 7 by 2 1 + root 7 by 2 and minus root 2...

solve for the area of the triangle of root 2 root 2 1 - root 7 by 2 1 + root 7 by 2 and minus root 2 minus root 2

Answer

sqrt(14)

Explanation

Solution

To find the area of the triangle with the given vertices, we can use the determinant formula for the area of a triangle.

Let the vertices be A(x1,y1)A(x_1, y_1), B(x2,y2)B(x_2, y_2), and C(x3,y3)C(x_3, y_3). Given vertices are: A=(2,2)A = (\sqrt{2}, \sqrt{2}) B=(172,1+72)B = (1 - \frac{\sqrt{7}}{2}, 1 + \frac{\sqrt{7}}{2}) C=(2,2)C = (-\sqrt{2}, -\sqrt{2})

So, we have: x1=2x_1 = \sqrt{2}, y1=2y_1 = \sqrt{2} x2=172x_2 = 1 - \frac{\sqrt{7}}{2}, y2=1+72y_2 = 1 + \frac{\sqrt{7}}{2} x3=2x_3 = -\sqrt{2}, y3=2y_3 = -\sqrt{2}

The area of the triangle is given by the formula: Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|

Let's calculate each term:

  1. y2y3=(1+72)(2)=1+72+2y_2 - y_3 = (1 + \frac{\sqrt{7}}{2}) - (-\sqrt{2}) = 1 + \frac{\sqrt{7}}{2} + \sqrt{2} x1(y2y3)=2(1+72+2)=2+142+2x_1(y_2 - y_3) = \sqrt{2}(1 + \frac{\sqrt{7}}{2} + \sqrt{2}) = \sqrt{2} + \frac{\sqrt{14}}{2} + 2

  2. y3y1=22=22y_3 - y_1 = -\sqrt{2} - \sqrt{2} = -2\sqrt{2} x2(y3y1)=(172)(22)=22+2142=22+14x_2(y_3 - y_1) = (1 - \frac{\sqrt{7}}{2})(-2\sqrt{2}) = -2\sqrt{2} + \frac{2\sqrt{14}}{2} = -2\sqrt{2} + \sqrt{14}

  3. y1y2=2(1+72)=2172y_1 - y_2 = \sqrt{2} - (1 + \frac{\sqrt{7}}{2}) = \sqrt{2} - 1 - \frac{\sqrt{7}}{2} x3(y1y2)=2(2172)=2+2+142x_3(y_1 - y_2) = -\sqrt{2}(\sqrt{2} - 1 - \frac{\sqrt{7}}{2}) = -2 + \sqrt{2} + \frac{\sqrt{14}}{2}

Now, sum these three terms: Sum =(2+142+2)+(22+14)+(2+2+142)= (\sqrt{2} + \frac{\sqrt{14}}{2} + 2) + (-2\sqrt{2} + \sqrt{14}) + (-2 + \sqrt{2} + \frac{\sqrt{14}}{2}) Group terms with common radicals and constants: Sum =(222+2)+(142+14+142)+(22)= (\sqrt{2} - 2\sqrt{2} + \sqrt{2}) + (\frac{\sqrt{14}}{2} + \sqrt{14} + \frac{\sqrt{14}}{2}) + (2 - 2) Sum =(0)+(14+214+142)+(0)= (0) + (\frac{\sqrt{14} + 2\sqrt{14} + \sqrt{14}}{2}) + (0) Sum =4142=214= \frac{4\sqrt{14}}{2} = 2\sqrt{14}

Finally, calculate the area: Area=12214=14\text{Area} = \frac{1}{2} |2\sqrt{14}| = \sqrt{14} square units.

Alternatively, we can use the base and height method. Observe that points A(2,2)A(\sqrt{2}, \sqrt{2}) and C(2,2)C(-\sqrt{2}, -\sqrt{2}) lie on the line y=xy=x. The length of the base ACAC is: AC=(2(2))2+(2(2))2AC = \sqrt{(\sqrt{2} - (-\sqrt{2}))^2 + (\sqrt{2} - (-\sqrt{2}))^2} AC=(22)2+(22)2=8+8=16=4AC = \sqrt{(2\sqrt{2})^2 + (2\sqrt{2})^2} = \sqrt{8 + 8} = \sqrt{16} = 4 units.

The height of the triangle is the perpendicular distance from point B(172,1+72)B(1 - \frac{\sqrt{7}}{2}, 1 + \frac{\sqrt{7}}{2}) to the line y=xy=x (or xy=0x-y=0). The distance from a point (x0,y0)(x_0, y_0) to a line Ax+By+C=0Ax + By + C = 0 is given by h=Ax0+By0+CA2+B2h = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}. Here, (x0,y0)=(172,1+72)(x_0, y_0) = (1 - \frac{\sqrt{7}}{2}, 1 + \frac{\sqrt{7}}{2}), and the line is xy=0x - y = 0 (so A=1,B=1,C=0A=1, B=-1, C=0). h=(172)(1+72)12+(1)2h = \frac{|(1 - \frac{\sqrt{7}}{2}) - (1 + \frac{\sqrt{7}}{2})|}{\sqrt{1^2 + (-1)^2}} h=1721721+1h = \frac{|1 - \frac{\sqrt{7}}{2} - 1 - \frac{\sqrt{7}}{2}|}{\sqrt{1 + 1}} h=72=72h = \frac{|-\sqrt{7}|}{\sqrt{2}} = \frac{\sqrt{7}}{\sqrt{2}} units.

The area of the triangle is 12×base×height\frac{1}{2} \times \text{base} \times \text{height}: Area=12×AC×h=12×4×72\text{Area} = \frac{1}{2} \times AC \times h = \frac{1}{2} \times 4 \times \frac{\sqrt{7}}{\sqrt{2}} Area=2×72=2722=14\text{Area} = 2 \times \frac{\sqrt{7}}{\sqrt{2}} = \frac{2\sqrt{7}\sqrt{2}}{2} = \sqrt{14} square units.

Both methods yield the same result.