Solveeit Logo

Question

Question: Solve for every value of n, \({1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \r...

Solve for every value of n, 12+22+32+............+n2=16(n)(n+1)(2n+1){1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right), n is a natural number

Explanation

Solution

Hint-Use mathematical induction. It is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.

We prove the above relation by principle of mathematical induction. This technique involves two steps to prove a statement.
Step 1-It proves that a statement is true for the initial value.
Step 2-It proves that if the statement is true for the nth number then it is also true for (n+1)th number.
Let p(n)=12+22+32+............+n2=16(n)(n+1)(2n+1)p\left( n \right) = {1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)
For n=1
LHS=12=1LHS = {1^2} = 1
RHS=(1)(1+1)(2×1+1)6 RHS=1×2×36=1  RHS = \dfrac{{\left( 1 \right)\left( {1 + 1} \right)\left( {2 \times 1 + 1} \right)}}{6} \\\ \Rightarrow RHS = \dfrac{{1 \times 2 \times 3}}{6} = 1 \\\
LHS=RHSLHS = RHS
P(n) is true for n=1
So, It proves that a statement is true for the initial value.
Now, we Assume that P(k) is true
12+22+32+............+(k1)2+k2=(k)(k+1)(2k+1)6{1^2} + {2^2} + {3^2} + ............ + {\left( {k - 1} \right)^2} + {k^2} = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}
Now, we have to prove that P(k+1) is true
12+22+32+............+k2+(k+1)2=(k+1)(k+2)(2k+3)6 LHS=12+22+32+............+k2+(k+1)2 LHS=(k)(k+1)(2k+1)6+(k+1)2 LHS=(k)(k+1)(2k+1)+6(k+1)26  {1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\\ LHS = {1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} \\\ \Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {\left( {k + 1} \right)^2} \\\ \Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right) + 6{{\left( {k + 1} \right)}^2}}}{6} \\\
Take common (k+1)
LHS=(k+1)(k(2k+1)+6(k+1))6 LHS=(k+1)(2k2+7k+6)6  \Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k\left( {2k + 1} \right) + 6\left( {k + 1} \right)} \right)}}{6} \\\ \Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{6} \\\
Now factories
LHS=(k+1)(k+2)(2k+3)6 LHS=RHS  \Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\\ LHS = RHS \\\
It is proved that P(k+1) is true. So, we can say P(k) is also true.
So, Hence proved 12+22+32+............+n2=16(n)(n+1)(2n+1){1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right) for every value of n, n is a natural number.

Note-Whenever we face such types of problems we use some important points. First check the statement for initial value (n=1) .If it is proved then we assume the statement is true for (n=k) .So, statement is also true for (n=k+1).