Question
Question: Solve for all real x x satisfying cos 4 x + cos 2 x sin 2 x + sin 4 x = 3 4 . cos 4 x+cos 2 xsin 2 x...
Solve for all real x x satisfying cos 4 x + cos 2 x sin 2 x + sin 4 x = 3 4 . cos 4 x+cos 2 xsin 2 x+sin 4 x= 4 3 .
x = \frac{n\pi}{2} + \frac{1}{2} \arctan\left(\frac{6 \pm \sqrt{43}}{7}\right), n \in \mathbb{Z}
Solution
The given trigonometric equation is: cos4x+cos2xsin2x+sin4x=43 We use the identity 2sinθcosθ=sin2θ. Thus, cos2xsin2x=21sin4x. Substituting this into the equation: cos4x+21sin4x+sin4x=43 cos4x+23sin4x=43 Multiply by 2 to get rid of the fraction: 2cos4x+3sin4x=23 This is an equation of the form acosθ+bsinθ=c, where θ=4x, a=2, b=3, and c=23. We use the substitution t=tan(2θ)=tan(24x)=tan(2x). The identities for cosθ and sinθ in terms of t are: cosθ=1+t21−t2andsinθ=1+t22t Substituting these into the equation 2cos4x+3sin4x=23: 2(1+t21−t2)+3(1+t22t)=23 Multiply both sides by 2(1+t2) to clear the denominators: 2⋅2(1−t2)+2⋅3(2t)=3(1+t2) 4(1−t2)+12t=3(1+t2) 4−4t2+12t=3+3t2 Rearrange the terms to form a quadratic equation in t: 7t2−12t−1=0 We solve this quadratic equation for t using the quadratic formula t=2a−b±b2−4ac: t=2(7)−(−12)±(−12)2−4(7)(−1) t=1412±144+28 t=1412±172 Since 172=4×43=243: t=1412±243 t=76±43 So, we have two possible values for t=tan(2x):
- tan(2x)=76+43
- tan(2x)=76−43
For the first case, tan(2x)=76+43: The general solution is 2x=nπ+arctan(76+43), where n is an integer. Dividing by 2, we get: x=2nπ+21arctan(76+43)
For the second case, tan(2x)=76−43: The general solution is 2x=mπ+arctan(76−43), where m is an integer. Dividing by 2, we get: x=2mπ+21arctan(76−43)
These two sets of solutions represent all real values of x satisfying the given equation. The final answer is x=2nπ+21arctan(76±43),n∈Z.