Solveeit Logo

Question

Question: Solve for all real x x satisfying cos 4 x + cos 2 x sin 2 x + sin 4 x = 3 4 . cos 4 x+cos 2 xsin 2 x...

Solve for all real x x satisfying cos 4 x + cos 2 x sin 2 x + sin 4 x = 3 4 . cos 4 x+cos 2 xsin 2 x+sin 4 x= 4 3 ​ .

Answer

x = \frac{n\pi}{2} + \frac{1}{2} \arctan\left(\frac{6 \pm \sqrt{43}}{7}\right), n \in \mathbb{Z}

Explanation

Solution

The given trigonometric equation is: cos4x+cos2xsin2x+sin4x=34\cos 4x + \cos 2x \sin 2x + \sin 4x = \frac{3}{4} We use the identity 2sinθcosθ=sin2θ2 \sin \theta \cos \theta = \sin 2\theta. Thus, cos2xsin2x=12sin4x\cos 2x \sin 2x = \frac{1}{2} \sin 4x. Substituting this into the equation: cos4x+12sin4x+sin4x=34\cos 4x + \frac{1}{2} \sin 4x + \sin 4x = \frac{3}{4} cos4x+32sin4x=34\cos 4x + \frac{3}{2} \sin 4x = \frac{3}{4} Multiply by 2 to get rid of the fraction: 2cos4x+3sin4x=322 \cos 4x + 3 \sin 4x = \frac{3}{2} This is an equation of the form acosθ+bsinθ=ca \cos \theta + b \sin \theta = c, where θ=4x\theta = 4x, a=2a=2, b=3b=3, and c=32c=\frac{3}{2}. We use the substitution t=tan(θ2)=tan(4x2)=tan(2x)t = \tan(\frac{\theta}{2}) = \tan(\frac{4x}{2}) = \tan(2x). The identities for cosθ\cos \theta and sinθ\sin \theta in terms of tt are: cosθ=1t21+t2andsinθ=2t1+t2\cos \theta = \frac{1 - t^2}{1 + t^2} \quad \text{and} \quad \sin \theta = \frac{2t}{1 + t^2} Substituting these into the equation 2cos4x+3sin4x=322 \cos 4x + 3 \sin 4x = \frac{3}{2}: 2(1t21+t2)+3(2t1+t2)=322 \left(\frac{1 - t^2}{1 + t^2}\right) + 3 \left(\frac{2t}{1 + t^2}\right) = \frac{3}{2} Multiply both sides by 2(1+t2)2(1+t^2) to clear the denominators: 22(1t2)+23(2t)=3(1+t2)2 \cdot 2 (1 - t^2) + 2 \cdot 3 (2t) = 3 (1 + t^2) 4(1t2)+12t=3(1+t2)4 (1 - t^2) + 12t = 3 (1 + t^2) 44t2+12t=3+3t24 - 4t^2 + 12t = 3 + 3t^2 Rearrange the terms to form a quadratic equation in tt: 7t212t1=07t^2 - 12t - 1 = 0 We solve this quadratic equation for tt using the quadratic formula t=b±b24ac2at = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: t=(12)±(12)24(7)(1)2(7)t = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(7)(-1)}}{2(7)} t=12±144+2814t = \frac{12 \pm \sqrt{144 + 28}}{14} t=12±17214t = \frac{12 \pm \sqrt{172}}{14} Since 172=4×43=243\sqrt{172} = \sqrt{4 \times 43} = 2\sqrt{43}: t=12±24314t = \frac{12 \pm 2\sqrt{43}}{14} t=6±437t = \frac{6 \pm \sqrt{43}}{7} So, we have two possible values for t=tan(2x)t = \tan(2x):

  1. tan(2x)=6+437\tan(2x) = \frac{6 + \sqrt{43}}{7}
  2. tan(2x)=6437\tan(2x) = \frac{6 - \sqrt{43}}{7}

For the first case, tan(2x)=6+437\tan(2x) = \frac{6 + \sqrt{43}}{7}: The general solution is 2x=nπ+arctan(6+437)2x = n\pi + \arctan\left(\frac{6 + \sqrt{43}}{7}\right), where nn is an integer. Dividing by 2, we get: x=nπ2+12arctan(6+437)x = \frac{n\pi}{2} + \frac{1}{2} \arctan\left(\frac{6 + \sqrt{43}}{7}\right)

For the second case, tan(2x)=6437\tan(2x) = \frac{6 - \sqrt{43}}{7}: The general solution is 2x=mπ+arctan(6437)2x = m\pi + \arctan\left(\frac{6 - \sqrt{43}}{7}\right), where mm is an integer. Dividing by 2, we get: x=mπ2+12arctan(6437)x = \frac{m\pi}{2} + \frac{1}{2} \arctan\left(\frac{6 - \sqrt{43}}{7}\right)

These two sets of solutions represent all real values of xx satisfying the given equation. The final answer is x=nπ2+12arctan(6±437),nZx = \frac{n\pi}{2} + \frac{1}{2} \arctan\left(\frac{6 \pm \sqrt{43}}{7}\right), n \in \mathbb{Z}.