Solveeit Logo

Question

Question: Solve \[\dfrac{d}{{dx}}{\sin ^{ - 1}}\left( {2ax\sqrt {1 - {a^2}{x^2}} } \right) = \] A.\[\dfrac{{...

Solve ddxsin1(2ax1a2x2)=\dfrac{d}{{dx}}{\sin ^{ - 1}}\left( {2ax\sqrt {1 - {a^2}{x^2}} } \right) =
A.2aa2x2\dfrac{{2a}}{{\sqrt {{a^2} - {x^2}} }}
B.aa2x2\dfrac{a}{{\sqrt {{a^2} - {x^2}} }}
C.2a1a2x2\dfrac{{2a}}{{\sqrt {1 - {a^2}{x^2}} }}
D.a1a2x2\dfrac{a}{{\sqrt {1 - {a^2}{x^2}} }}

Explanation

Solution

Hint : These types of questions are of specified form where you have to substitute the value xx and aa together then find the derivation , sometimes the variable aa is not given , so just substitute the xx . The substitution will take place in such a way that it will form an identity or formula to simplify the expression .

Complete step-by-step answer :
Given : y=sin1(2ax1a2x2)y = {\sin ^{ - 1}}\left( {2ax\sqrt {1 - {a^2}{x^2}} } \right)
Now substituting the value of ax=sinθax = \sin \theta , we get
=sin1(2sinθ1(sinθ)2)= {\sin ^{ - 1}}\left( {2\sin \theta \sqrt {1 - {{\left( {\sin \theta } \right)}^2}} } \right) , on solving we get
=sin1(2sinθ1sin2θ)= {\sin ^{ - 1}}\left( {2\sin \theta \sqrt {1 - {{\sin }^2}\theta } } \right) ,
now using the basic trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 , we get
=sin1(2sinθcos2θ)= {\sin ^{ - 1}}\left( {2\sin \theta \sqrt {{{\cos }^2}\theta } } \right) , on simplifying we get
=sin1(2sinθcosθ)= {\sin ^{ - 1}}\left( {2\sin \theta \cos \theta } \right) ,
Now using the identity of sin2x=2sinxcosx\sin 2x = 2\sin x\cos x , we get
=sin1(sin2θ)= {\sin ^{ - 1}}\left( {\sin 2\theta } \right) , on solving we get
=2θ= 2\theta .
Now putting the values of θ\theta we get ,
y=2sin1(ax)y = 2{\sin ^{ - 1}}\left( {ax} \right)
Now differentiating the expression with respect to xx we get ,
dydx=2sin1(ax)\dfrac{{dy}}{{dx}} = 2{\sin ^{ - 1}}\left( {ax} \right) ,
Using the formula for differentiation of sin1x=11x2{\sin ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }} we get
dydx=2[11(ax)2×a]\dfrac{{dy}}{{dx}} = 2\left[ {\dfrac{1}{{\sqrt {1 - {{\left( {ax} \right)}^2}} }} \times a} \right]
We have multiplied by aa , using the chain rule of derivatives .
dydx=2a1(ax)2\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{{\sqrt {1 - {{\left( {ax} \right)}^2}} }} , on simplifying we get
dydx=2a1a2x2\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{{\sqrt {1 - {a^2}{x^2}} }} .
Therefore , option ( C ) is the correct answer for the given question .
So, the correct answer is “Option C”.

Note : You have to be cautious about the chain rule of the derivatives and the specified form of the questions of the derivatives to check whether we have to have a substitute or not . If you directly apply the formula for the inverse of sin1x{\sin ^{ - 1}}x it will become more complex and take more time to solve . The inverse of function is not cancelled out with same trigonometric function like sin1(sinx){\sin ^{ - 1}}(\sin x) , it is just like equating the angles as the angles in range of sinx\sin x and domain of sinx\sin x