Solveeit Logo

Question

Question: Solve \({\csc ^2}x - 2{\cot ^2}x = 0\)...

Solve csc2x2cot2x=0{\csc ^2}x - 2{\cot ^2}x = 0

Explanation

Solution

Now in order to solve the above equation we should work with one side at a time and manipulate it to the other side. Using some basic trigonometric identities like we can simplify the above expression.
cscx=1sinx cotx=cosxsinx  \csc x = \dfrac{1}{{\sin x}} \\\ \cot x = \dfrac{{\cos x}}{{\sin x}} \\\
Such that in order to solve the given expression we have to use the above identities and express our given expression in that form and thereby verify it.

Complete step by step solution:
Given
csc2x2cot2x=0...........................(i){\csc ^2}x - 2{\cot ^2}x = 0...........................\left( i \right)
Here we have to basically solve for xx using any mathematical operations and functions. In order to solve for xx we can use the above mentioned trigonometric identities to simplify it.
Now we know that:
cscx=1sinx cotx=cosxsinx  \csc x = \dfrac{1}{{\sin x}} \\\ \cot x = \dfrac{{\cos x}}{{\sin x}} \\\
So substituting the above expression in the given equation, we can write:
csc2x2cot2x=0 (1sinx)22(cosxsinx)2=0.....................(ii)  \Rightarrow {\csc ^2}x - 2{\cot ^2}x = 0 \\\ \Rightarrow {\left( {\dfrac{1}{{\sin x}}} \right)^2} - 2{\left( {\dfrac{{\cos x}}{{\sin x}}} \right)^2} = 0.....................\left( {ii} \right) \\\
Now we have to simplify the equation (ii). Such that both the terms have the same denominator. So we can write:
(1sinx)22(cosxsinx)2=0 12cos2xsin2x=0  \Rightarrow {\left( {\dfrac{1}{{\sin x}}} \right)^2} - 2{\left( {\dfrac{{\cos x}}{{\sin x}}} \right)^2} = 0 \\\ \Rightarrow \dfrac{{1 - 2{{\cos }^2}x}}{{{{\sin }^2}x}} = 0 \\\
Now on substituting cscx=1sinx\csc x = \dfrac{1}{{\sin x}} in the above equation we can write:
12cos2xsin2x=0 csc2x(12cos2x)=0.......................(iii)  \Rightarrow \dfrac{{1 - 2{{\cos }^2}x}}{{{{\sin }^2}x}} = 0 \\\ \Rightarrow {\csc ^2}x\left( {1 - 2{{\cos }^2}x} \right) = 0.......................\left( {iii} \right) \\\
Now in order to solve for xx we have to equate each term in the LHS to the RHS which is 0 and thereby find the possible values of xx.
So we can write:

csc2x(12cos2x)=0 csc2x=0        and      12cos2x=0 csc2x=0        and      cos2x=12 csc2x=0        and      cosx=±12 x=not defined        and      cosx=±12 x=not defined        and      x=nπ+π4      n=0,1,2......... {\csc ^2}x\left( {1 - 2{{\cos }^2}x} \right) = 0 \\\ \Rightarrow {\csc ^2}x = 0\;\;\;\;{\text{and}}\;\;\; \Rightarrow 1 - 2{\cos ^2}x = 0 \\\ \Rightarrow {\csc ^2}x = 0\;\;\;\;{\text{and}}\;\;\; \Rightarrow {\cos ^2}x = \dfrac{1}{2} \\\ \Rightarrow {\csc ^2}x = 0\;\;\;\;{\text{and}}\;\;\; \Rightarrow \cos x = \pm \sqrt {\dfrac{1}{2}} \\\ \Rightarrow x = {\text{not defined}}\;\;\;\;{\text{and}}\;\;\; \Rightarrow \cos x = \pm \sqrt {\dfrac{1}{2}} \\\ \Rightarrow x = {\text{not defined}}\;\;\;\;{\text{and}}\;\;\; \Rightarrow x = n\pi + \dfrac{\pi }{4}\;\;\;n = 0,1,2......... \\\

Therefore on solving csc2x2cot2x=0{\csc ^2}x - 2{\cot ^2}x = 0 we getx=nπ+π4  x = n\pi + \dfrac{\pi }{4}\;.

Note: Some other equations needed for solving these types of problem are:

1 + {\tan ^2}x = {\sec ^2}x \\\ \begin{array}{*{20}{l}} {\sin \left( {2x} \right) = 2\sin \left( x \right)\cos \left( x \right)} \\\ {\cos \left( {2x} \right) = {{\cos }^2}\left( x \right)-{{\sin }^2}\left( x \right) = 1-2{\text{ }}{{\sin}^2}\left( x \right) = 2{\text{ }}{{\cos }^2}\left( x \right)-1} \end{array} \\\

Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly, but we can also transform both sides to a common expression if we see no direct way to connect the two.