Solveeit Logo

Question

Question: Solve: $(cos(x-y))(dx+dy)+(cos(x+y))(dx-dy)=0$...

Solve: (cos(xy))(dx+dy)+(cos(x+y))(dxdy)=0(cos(x-y))(dx+dy)+(cos(x+y))(dx-dy)=0

Answer

sin(x)=Kcos(y)

Explanation

Solution

The given differential equation is: (cos(xy))(dx+dy)+(cos(x+y))(dxdy)=0(cos(x-y))(dx+dy)+(cos(x+y))(dx-dy)=0

Step 1: Expand and group terms First, expand the equation: cos(xy)dx+cos(xy)dy+cos(x+y)dxcos(x+y)dy=0cos(x-y)dx + cos(x-y)dy + cos(x+y)dx - cos(x+y)dy = 0

Group the terms containing dxdx and dydy: [cos(xy)+cos(x+y)]dx+[cos(xy)cos(x+y)]dy=0[cos(x-y) + cos(x+y)]dx + [cos(x-y) - cos(x+y)]dy = 0

Step 2: Apply trigonometric sum-to-product formulas Use the following trigonometric identities:

  1. cosA+cosB=2cos(A+B2)cos(AB2)cos A + cos B = 2 cos\left(\frac{A+B}{2}\right) cos\left(\frac{A-B}{2}\right)
  2. cosAcosB=2sin(A+B2)sin(AB2)cos A - cos B = -2 sin\left(\frac{A+B}{2}\right) sin\left(\frac{A-B}{2}\right)

For the dxdx coefficient, let A=xyA = x-y and B=x+yB = x+y: A+B2=(xy)+(x+y)2=2x2=x\frac{A+B}{2} = \frac{(x-y)+(x+y)}{2} = \frac{2x}{2} = x AB2=(xy)(x+y)2=2y2=y\frac{A-B}{2} = \frac{(x-y)-(x+y)}{2} = \frac{-2y}{2} = -y So, cos(xy)+cos(x+y)=2cos(x)cos(y)=2cos(x)cos(y)cos(x-y) + cos(x+y) = 2 cos(x) cos(-y) = 2 cos(x) cos(y)

For the dydy coefficient, using the same AA and BB: cos(xy)cos(x+y)=2sin(x)sin(y)=2sin(x)(sin(y))=2sin(x)sin(y)cos(x-y) - cos(x+y) = -2 sin(x) sin(-y) = -2 sin(x) (-sin(y)) = 2 sin(x) sin(y)

Substitute these back into the differential equation: [2cos(x)cos(y)]dx+[2sin(x)sin(y)]dy=0[2 cos(x) cos(y)]dx + [2 sin(x) sin(y)]dy = 0

Divide the entire equation by 2: cos(x)cos(y)dx+sin(x)sin(y)dy=0cos(x) cos(y)dx + sin(x) sin(y)dy = 0

Step 3: Separate the variables This is a separable differential equation. To separate variables, divide the entire equation by sin(x)cos(y)sin(x)cos(y): cos(x)cos(y)sin(x)cos(y)dx+sin(x)sin(y)sin(x)cos(y)dy=0\frac{cos(x) cos(y)}{sin(x) cos(y)}dx + \frac{sin(x) sin(y)}{sin(x) cos(y)}dy = 0 cos(x)sin(x)dx+sin(y)cos(y)dy=0\frac{cos(x)}{sin(x)}dx + \frac{sin(y)}{cos(y)}dy = 0 cot(x)dx+tan(y)dy=0cot(x)dx + tan(y)dy = 0

Step 4: Integrate both sides Integrate each term with respect to its variable: cot(x)dx+tan(y)dy=0\int cot(x)dx + \int tan(y)dy = \int 0

Recall the standard integrals: cot(x)dx=lnsin(x)+C1\int cot(x)dx = ln|sin(x)| + C_1 tan(y)dy=lncos(y)+C2\int tan(y)dy = -ln|cos(y)| + C_2

So, the integral becomes: lnsin(x)lncos(y)=Cln|sin(x)| - ln|cos(y)| = C (where C=C3C1C2C = C_3 - C_1 - C_2 is an arbitrary constant)

Step 5: Simplify the solution Use the logarithm property lnAlnB=ln(A/B)ln A - ln B = ln(A/B): lnsin(x)cos(y)=Cln\left|\frac{sin(x)}{cos(y)}\right| = C

To remove the logarithm, exponentiate both sides: sin(x)cos(y)=eC\left|\frac{sin(x)}{cos(y)}\right| = e^C

Let eC=K1e^C = K_1, where K1K_1 is an arbitrary positive constant. sin(x)cos(y)=K1\left|\frac{sin(x)}{cos(y)}\right| = K_1

This implies sin(x)cos(y)=±K1\frac{sin(x)}{cos(y)} = \pm K_1. Let K=±K1K = \pm K_1 be an arbitrary non-zero constant. sin(x)cos(y)=K\frac{sin(x)}{cos(y)} = K

Rearrange to get the final solution: sin(x)=Kcos(y)sin(x) = K cos(y)

Note: If K=0K=0, then sin(x)=0sin(x)=0, which means x=nπx=n\pi for integer nn. Substituting x=nπx=n\pi into the original equation leads to 0=00=0, so x=nπx=n\pi is also a valid solution, which is covered by K=0K=0. Thus, KK can be any real constant.

The final solution is sin(x)=Kcos(y)sin(x) = K cos(y).