Solveeit Logo

Question

Question: Solve \( \cos 2x + 3\cos x - 1 = 0. \)...

Solve cos2x+3cosx1=0.\cos 2x + 3\cos x - 1 = 0.

Explanation

Solution

Hint : By using the basic trigonometric identity given below we can simplify the above expression.
cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1
Also Quadratic Formula: ax2+bx+c=0a{x^2} + bx + c = 0 Here a,  b,  ca,\;b,\;c are numerical coefficients.
So to solve xx we have: x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Such that in order to solve and simplify the given expression we have to use the above identity and express our given expression in the quadratic form and thereby solve it.

Complete step-by-step answer :
Given
cos2x+3cosx1=0...................(i)\cos 2x + 3\cos x - 1 = 0...................\left( i \right)
Now we have to simplify the given equation and try to express it in the form of a quadratic equation, such that we can solve for xx as shown above.
Now we know:
cos2x=2cos2x1........................(ii)\cos 2x = 2{\cos ^2}x - 1........................\left( {ii} \right)
Substituting (ii) in (i) we get:
cos2x+3cosx1=2cos2x1+3cosx1 =2cos2x+3cosx2......................(iii)  \cos 2x + 3\cos x - 1 = 2{\cos ^2}x - 1 + 3\cos x - 1 \\\ = 2{\cos ^2}x + 3\cos x - 2......................\left( {iii} \right) \\\
Now we have to express the given expression in quadratic form.
So let

p=cosx 2cos2x+3cosx2=2p2+3p2............(iv)   \,\,\,\,\,\,\,p = \cos x \\\ \Rightarrow 2{\cos ^2}x + 3\cos x - 2 = 2{p^2} + 3p - 2............\left( {iv} \right) \;

On observing (iv) we can say that it’s in the form of ax2+bx+c=0a{x^2} + bx + c = 0 such that by the quadratic formula we can solve for p.
So we have:
2p2+3p2wherea=2,b=3andc=2.2{p^2} + 3p - 2\,{\text{where}}\,a = 2,\,b = 3\,{\text{and}}\,c = - 2.
Now we can solve for pp by using the formula:
p=b±b24ac2a.........................(v)p = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}.........................\left( v \right)
Now substituting the value of ‘a’, ‘b’ and ‘c’ in (v) we get:.

p=3±32(4×2×2)2×2 p=3±9+(16)4 p=3±254 p=3±54 p=3+54and354 p=24and84 p=12and2...........................(vi)   \Rightarrow p = \dfrac{{ - 3 \pm \sqrt {{3^2} - \left( {4 \times 2 \times - 2} \right)} }}{{2 \times 2}} \\\ \Rightarrow p = \dfrac{{ - 3 \pm \sqrt {9 + \left( {16} \right)} }}{4} \\\ \Rightarrow p = \dfrac{{ - 3 \pm \sqrt {25} }}{4} \\\ \Rightarrow p = \dfrac{{ - 3 \pm 5}}{4} \\\ \Rightarrow p = \dfrac{{ - 3 + 5}}{4}\,{\text{and}}\,\dfrac{{ - 3 - 5}}{4} \\\ \Rightarrow p = \dfrac{2}{4}\,{\text{and}}\, - \dfrac{8}{4} \\\ \Rightarrow p = \dfrac{1}{2}\,{\text{and}}\, - 2...........................\left( {vi} \right) \;

Now substituting for ’p’ back in (iv) we get:
p=cosx=12..................(vii) or p=cosx=2...............(viii)   p = \cos x = \dfrac{1}{2}..................\left( {vii} \right) \\\ {\text{or}} \\\ p = \cos x = - 2...............\left( {viii} \right) \;
So now on analyzing (vii) and (viii) we see that we now have two possibilities of cosx\cos x , but we also know that the range of cosx  is  [1,1].\cos x\;{\text{is}}\;\left[ { - 1,1} \right].
Such that equation (viii) p=cosx=2p = \cos x = - 2 doesn’t exist and is invalid.
So we have our answer p=cosx=12.p = \cos x = \dfrac{1}{2}.
Now solving for xx we get:
cosx=12 x=cos1(12) x=π3+2πn,  5π3+2πn............................(ix)   \Rightarrow \cos x = \dfrac{1}{2} \\\ \Rightarrow x = {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) \\\ \Rightarrow x = \dfrac{\pi }{3} + 2\pi n,\;\dfrac{{5\pi }}{3} + 2\pi n............................\left( {ix} \right) \;
Therefore our final answer is:
x=π3+2πn,    5π3+2πnx = \dfrac{\pi }{3} + 2\pi n,\;\;\dfrac{{5\pi }}{3} + 2\pi n
So, the correct answer is “ x=π3+2πn,    5π3+2πnx = \dfrac{\pi }{3} + 2\pi n,\;\;\dfrac{{5\pi }}{3} + 2\pi n ”.

Note : Some other equations needed for solving these types of problem are:

\begin{array}{*{20}{l}} {\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right)} \\\ {\cos \left( {2\theta } \right) = {{\cos }^2}\left( \theta \right)-{{\sin }^2}\left( \theta \right) = 1-2{\text{ }}{{\sin }^2}\left( \theta \right) = 2{\text{ }}{{\cos }^2}\left( \theta \right)-1} \end{array} \\\ \\\

Range of cosine and sine: [1,1]\left[ { - 1,1} \right]
Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly, but we can also transform both sides to a common expression if we see no direct way to connect the two.