Question
Question: Solve and find the value of \( \int{3xdx} \)...
Solve and find the value of
∫3xdx
Solution
Hint : We are given the function 3x and we have to find it integral. We can use the property of the integral of constant times a function to simplify the integration and then use the formula for the integration of x times dx, which is ∫xdx=2x2 , to obtain the answer to this given question.
Complete step-by-step answer :
We know that the integration of a constant c times a function f is given by
∫cf(x)dx=c∫f(x)dx..................(1.1)
i.e. the integral of constant times a function is that constant multiplied by integral of the function.
Now, taking f(x)=x and c=3 in equation (1.1), we obtain
∫3xdx=3∫xdx..................(1.2)
Now, we also know that the indefinite integral of x is given by
∫xndx=n+1xn+1..........................(1.3)
Taking n=1 in (1.3), we have
∫xdx=∫x1dx=1+1x1+1=2x2..............(1.4)
Thus, using the value obtained in equation (1.4) in equation (1.2), we obtain