Question
Question: Solve and find the value of: \(\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{2...
Solve and find the value of: cot200∘cot200∘−tan280∘sec220∘2sin140∘sec280∘+cosec20∘sec340∘
Solution
The given question deals with basic simplification of trigonometric functions by using many simple trigonometric formulae such as sin(π+x)=−sinx and cos(π+x)=−cosx . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem. We first convert all the trigonometric ratios into sine and cosine y=using some basic trigonometric formulae and identity and then simplify the expression.
Complete step by step answer:
In the given problem, we have to find the value of cot200∘cot200∘−tan280∘sec220∘2sin140∘sec280∘+cosec20∘sec340∘ .
So, cot200∘cot200∘−tan200∘sec220∘2sin140∘sec280∘+cosec20∘sec340∘
Using cosec(x)=sin(x)1 and secx=cosx1, we get,
⇒1−cot200∘tan280∘cos280∘2sin140∘cos220∘+cos340∘sin20∘
Using cotx=sinxcosx and tanx=cosxsinx, we get,
⇒1−(sin200∘cos200∘)(cos280∘sin280∘)cos280∘2sin140∘cos220∘+cos340∘sin20∘
Using the trigonometric formulae cos(2π−θ)=cosθ and sin(π−θ)=sinθ, we get,
1−(cos200∘cos280∘sin200∘sin280∘)cos80∘2sin40∘cos140∘+cos20∘sin20∘
Now, using the trigonometric identities cos(π−θ)=−cosθ and sin2x=2sinxcosx, we get,
(cos200∘cos280∘cos200∘cos280∘−sin200∘sin280∘)cos80∘−2sin40∘cos40∘+cos20∘sin20∘
⇒(cos200∘cos280∘cos200∘cos280∘−sin200∘sin280∘)cos80∘−sin80∘+cos20∘sin20∘
Now, using the compound angle formulae of sine and cosine sin(A+B)=sinAcosB+cosAsinB and cos(A+B)=cosAcosB−sinAsinB. So, we get,
⇒(cos200∘cos280∘cos200∘cos280∘−sin200∘sin280∘)cos80∘cos20∘−sin80∘cos20∘+cos80∘sin20∘
Rearranging the terms,
(cos200∘cos280∘cos200∘cos280∘−sin200∘sin280∘)cos80∘cos20∘cos80∘sin20∘−sin80∘cos20∘
⇒cos200∘cos280∘cos480∘cos80∘cos20∘sin60∘
cos480∘cos80∘cos20∘sin60∘cos200∘cos280∘
Now, we use trigonometric formulae cos(π+θ)=−cosθ and cos(2π+θ)=cosθ,
⇒cos120∘cos80∘cos20∘−sin60∘cos20∘cos80∘
Cancelling the common factors in numerator and denominator, we get,
cos120∘−sin60∘
Now, we know that cos(π−θ)=−cosθ
−cos60∘−sin60∘=tan60∘
Now, we know the value of tan60∘. So, we get,
∴3
So, the value of cot200∘cot200∘−tan280∘sec220∘2sin140∘sec280∘+cosec20∘sec340∘ is 3.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: tan(x)=cos(x)sin(x) and cot(x)=sin(x)cos(x) . Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. However, questions involving this type of simplification of trigonometric ratios may also have multiple interconvertible answers. We must remember the values for trigonometric expression of some standard angles such as 60∘, 120∘, etc. We must take care of calculations while solving such questions.