Solveeit Logo

Question

Question: Solve and find the value of: \(\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{2...

Solve and find the value of: 2sin140sec280sec220+sec340cosec20cot200tan280cot200\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}}

Explanation

Solution

The given question deals with basic simplification of trigonometric functions by using many simple trigonometric formulae such as sin(π+x)=sinx\sin (\pi + x) = - \sin x and cos(π+x)=cosx\cos (\pi + x) = - \cos x . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem. We first convert all the trigonometric ratios into sine and cosine y=using some basic trigonometric formulae and identity and then simplify the expression.

Complete step by step answer:
In the given problem, we have to find the value of 2sin140sec280sec220+sec340cosec20cot200tan280cot200\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}} .
So, 2sin140sec280sec220+sec340cosec20cot200tan200cot200 \dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{200}^ \circ }}}{{\cot {{200}^ \circ }}}}} \\\
Using cosec(x)=1sin(x)\cos ec(x) = \dfrac{1}{{\sin (x)}} and secx=1cosx\sec x = \dfrac{1}{{\cos x}}, we get,
2sin140cos220cos280+sin20cos3401tan280cot200 \Rightarrow \dfrac{{\dfrac{{2\sin {{140}^ \circ }\cos {{220}^ \circ }}}{{\cos {{280}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{340}^ \circ }}}}}{{1 - \dfrac{{\tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}} \\\
Using cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} and tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}, we get,
2sin140cos220cos280+sin20cos3401(sin280cos280)(cos200sin200)\Rightarrow \dfrac{{\dfrac{{2\sin {{140}^ \circ }\cos {{220}^ \circ }}}{{\cos {{280}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{340}^ \circ }}}}}{{1 - \dfrac{{\left( {\dfrac{{\sin {{280}^ \circ }}}{{\cos {{280}^ \circ }}}} \right)}}{{\left( {\dfrac{{\cos {{200}^ \circ }}}{{\sin {{200}^ \circ }}}} \right)}}}}

Using the trigonometric formulae cos(2πθ)=cosθ\cos \left( {2\pi - \theta } \right) = \cos \theta and sin(πθ)=sinθ\sin \left( {\pi - \theta } \right) = \sin \theta , we get,
2sin40cos140cos80+sin20cos201(sin200sin280cos200cos280)\dfrac{{\dfrac{{2\sin {{40}^ \circ }\cos {{140}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{1 - \left( {\dfrac{{\sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}
Now, using the trigonometric identities cos(πθ)=cosθ\cos \left( {\pi - \theta } \right) = - \cos \theta and sin2x=2sinxcosx\sin 2x = 2\sin x\cos x, we get,
2sin40cos40cos80+sin20cos20(cos200cos280sin200sin280cos200cos280) \dfrac{{\dfrac{{ - 2\sin {{40}^ \circ }\cos {{40}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}} \\\
sin80cos80+sin20cos20(cos200cos280sin200sin280cos200cos280)\Rightarrow \dfrac{{\dfrac{{ - \sin {{80}^ \circ }}}{{\cos {{80}^ \circ }}} + \dfrac{{\sin {{20}^ \circ }}}{{\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}

Now, using the compound angle formulae of sine and cosine sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B and cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B. So, we get,
sin80cos20+cos80sin20cos80cos20(cos200cos280sin200sin280cos200cos280)\Rightarrow \dfrac{{\dfrac{{ - \sin {{80}^ \circ }\cos {{20}^ \circ } + \cos {{80}^ \circ }\sin {{20}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}}
Rearranging the terms,
cos80sin20sin80cos20cos80cos20(cos200cos280sin200sin280cos200cos280) \dfrac{{\dfrac{{\cos {{80}^ \circ }\sin {{20}^ \circ } - \sin {{80}^ \circ }\cos {{20}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\left( {\dfrac{{\cos {{200}^ \circ }\cos {{280}^ \circ } - \sin {{200}^ \circ }\sin {{280}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}} \right)}} \\\
sin60cos80cos20cos480cos200cos280\Rightarrow \dfrac{{\dfrac{{\sin {{60}^ \circ }}}{{\cos {{80}^ \circ }\cos {{20}^ \circ }}}}}{{\dfrac{{\cos {{480}^ \circ }}}{{\cos {{200}^ \circ }\cos {{280}^ \circ }}}}}
sin60cos200cos280cos480cos80cos20\dfrac{{\sin {{60}^ \circ }\cos {{200}^ \circ }\cos {{280}^ \circ }}}{{\cos {{480}^ \circ }\cos {{80}^ \circ }\cos {{20}^ \circ }}}

Now, we use trigonometric formulae cos(π+θ)=cosθ\cos \left( {\pi + \theta } \right) = - \cos \theta and cos(2π+θ)=cosθ\cos \left( {2\pi + \theta } \right) = \cos \theta ,
sin60cos20cos80cos120cos80cos20 \Rightarrow \dfrac{{ - \sin {{60}^ \circ }\cos {{20}^ \circ }\cos {{80}^ \circ }}}{{\cos {{120}^ \circ }\cos {{80}^ \circ }\cos {{20}^ \circ }}} \\\
Cancelling the common factors in numerator and denominator, we get,
sin60cos120\dfrac{{ - \sin {{60}^ \circ }}}{{\cos {{120}^ \circ }}}
Now, we know that cos(πθ)=cosθ\cos \left( {\pi - \theta } \right) = - \cos \theta
sin60cos60=tan60\dfrac{{ - \sin {{60}^ \circ }}}{{ - \cos {{60}^ \circ }}}=\tan {60^ \circ }
Now, we know the value of tan60\tan {60^ \circ }. So, we get,
3\therefore \sqrt 3

So, the value of 2sin140sec280sec220+sec340cosec20cot200tan280cot200\dfrac{{\dfrac{{2\sin {{140}^ \circ }\sec {{280}^ \circ }}}{{\sec {{220}^ \circ }}} + \dfrac{{\sec {{340}^ \circ }}}{{\cos ec{{20}^ \circ }}}}}{{\dfrac{{\cot {{200}^ \circ } - \tan {{280}^ \circ }}}{{\cot {{200}^ \circ }}}}} is 3\sqrt 3 .

Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: tan(x)=sin(x)cos(x)\tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}} and cot(x)=cos(x)sin(x)\cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}} . Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. However, questions involving this type of simplification of trigonometric ratios may also have multiple interconvertible answers. We must remember the values for trigonometric expression of some standard angles such as 60{60^ \circ }, 120{120^ \circ }, etc. We must take care of calculations while solving such questions.