Solveeit Logo

Question

Question: Solve 2x – cosx – 3 = 0 by using the method of successive approximations correct of three decimal pl...

Solve 2x – cosx – 3 = 0 by using the method of successive approximations correct of three decimal places.

Answer

1.523

Explanation

Solution

Let the given equation be f(x)=2xcosx3=0f(x) = 2x - \cos x - 3 = 0.

We use the Newton-Raphson method: xn+1=xnf(xn)f(xn)x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.

f(x)=2+sinxf'(x) = 2 + \sin x.

The iteration formula is xn+1=xn2xncosxn32+sinxnx_{n+1} = x_n - \frac{2x_n - \cos x_n - 3}{2 + \sin x_n}.

Evaluate f(1)1.54f(1) \approx -1.54 and f(2)1.42f(2) \approx 1.42. A root exists between 1 and 2.

Choose initial guess x0=1.5x_0 = 1.5.

Iterate:

x11.5f(1.5)f(1.5)1.50.07072.99751.5236x_1 \approx 1.5 - \frac{f(1.5)}{f'(1.5)} \approx 1.5 - \frac{-0.0707}{2.9975} \approx 1.5236.

x21.5236f(1.5236)f(1.5236)1.52360.0008972.99901.5233x_2 \approx 1.5236 - \frac{f(1.5236)}{f'(1.5236)} \approx 1.5236 - \frac{0.000897}{2.9990} \approx 1.5233.

x31.5233f(1.5233)f(1.5233)1.52330.0000002.99911.5233x_3 \approx 1.5233 - \frac{f(1.5233)}{f'(1.5233)} \approx 1.5233 - \frac{0.000000}{2.9991} \approx 1.5233.

The value converges to 1.52331.5233.

Rounding to three decimal places gives 1.5231.523.

Verify f(1.523)0.00081f(1.523) \approx -0.00081, which is close to zero.

The root correct to three decimal places is 1.5231.523.