Question
Question: Solve \(1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0\)...
Solve 1+sin3x+cos3x−23sin2x=0
Solution
Hint: Here, we will use the trigonometric formulas to simplify the given equation.
Given,
1+sin3x+cos3x−23sin2x=0→(1)
Now, let us simplify the equation (1) by substituting the formula of sin2xi.e.., 2sinxcosx.we get
⇒1+sin3x+cos3x−23sin2x=0 ⇒1+sin3x+cos3x−23(2sinxcosx)=0 ⇒1+sin3x+cos3x−3sinxcosx=0 ⇒1+sin3x+cos3x−3(sinx)(cosx)(1)=0→(2)
As, we can see equation (2) is in the form of a3+b3+c3−3abc=0where a=1,b=sinx,c=cosx
And we now that
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca) ∴(a+b+c)(a2+b2+c2−ab−bc−ca)=0
Here, we will consider the factor a+b+c=0 as the other factor is non-zero. Hence, from
equation (2), we can write
1+sinx+cosx=0→(3)
Now, let us simplify equation (3) to find the values of ‘x’
⇒1+sinx+cosx=0 ⇒sinx+cosx=−1
Let us multiply the above equation with 21we get,
⇒sinx+cosx=−1 ⇒(21)(sinx+cosx)=−21 ⇒21(sinx)+21(cosx)=−21 ⇒sinxsin(4π)+(cosx)cos(4π)=cos(43π)→(4)[∵sin(4π)=21,cos(4π)=21,cos(43π)=−21]
As, we can see equation (4) is in the form of sinAsinB+cosAcosB=cos(A−B)where
A=xandB=4π.Now let us apply the formulae ofsinAsinB+cosAcosB we get
\Rightarrow \cos (x - \frac{\pi }{4}) = \cos (\frac{{3\pi }}{4}) \\\ \Rightarrow x - \frac{\pi }{4} = 2n\pi \pm \frac{{3\pi }}{4} \to (5),['n'{\text{is integral number]}} \\\ \end{gathered} $$ Therefore, solving equation (5) we get, $ \Rightarrow x = 2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}['n'{\text{is integral number}}]$ Hence, the values of ‘x’ satisfying $1 + {\sin ^3}x + {\cos ^3}x - \frac{3}{2}\sin 2x = 0$is$x = 2n\pi + \pi and x = 2n\pi - \frac{\pi }{2}$. Note: Here, we have added $'2n\pi '$to the $\frac{{3\pi }}{4}$after cancelling the cosine terms on the both sides as $'2\pi '$is the period of the cosine function and n is an integral number.