Solveeit Logo

Question

Question: Solve \[1 + \cos 2x + \cos 4x + \cos 6x = \] A.\[2\cos x\cos 2x\cos 3x\] B.\[4\sin x\cos 2x\cos ...

Solve 1+cos2x+cos4x+cos6x=1 + \cos 2x + \cos 4x + \cos 6x =
A.2cosxcos2xcos3x2\cos x\cos 2x\cos 3x
B.4sinxcos2xcos3x4\sin x\cos 2x\cos 3x
C.4cosxcos2xcos3x4\cos x\cos 2x\cos 3x
D.None of these

Explanation

Solution

Hint : In the given question the addition of trigonometric ratios are given , so we have to use the identity formula for compound angles for cosx\cos x . First solve for larger angles (cos4x\cos 4xand cos6x\cos 6x ) than for smaller angles . Also , here direct 1+cos2x1 + \cos 2x is given which is equal to 1+cos2x=2cos2x1 + \cos 2x = 2{\cos ^2}x

Complete step-by-step answer :
Given : 1+cos2x+cos4x+cos6x1 + \cos 2x + \cos 4x + \cos 6x ,
Applying the identity formula cosA+cosB=2cosA+B2cosAB2\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} for cos4x\cos 4xand cos6x\cos 6x we get ,
=1+cos2x+2cos(6x4x2)cos(6x+4x2)= 1 + \cos 2x + 2\cos (\dfrac{{6x - 4x}}{2})\cos (\dfrac{{6x + 4x}}{2}) , on solving we get ,
=1+cos2x+2cosxcos5x= 1 + \cos 2x + 2\cos x\cos 5x
Now applying formula 1+cos2x=2cos2x1 + \cos 2x = 2{\cos ^2}x we get ,
=2cos2x+2cosxcos5x= 2{\cos ^2}x + 2\cos x\cos 5x taking 2cosx2\cos xcommon we get ,
=2cosx(cosx+cos5x)= 2\cos x(\cos x + \cos 5x)
Now again applying identity cosA+cosB=2cosA+B2cosAB2\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} we get ,
=2cosx[2cos(5x+x2)cos(5xx2)]= 2\cos x\left[ {2\cos (\dfrac{{5x + x}}{2})\cos (\dfrac{{5x - x}}{2})} \right] , on solving we get ,
=2cosx[2cos3xcos2x]= 2\cos x\left[ {2\cos 3x\cos 2x} \right]
On solving further we get ,
=4cosxcos2xcos3x= 4\cos x\cos 2x\cos 3x .
Therefore , option ( 3 ) is the correct answer .
So, the correct answer is “Option 3”.

Note: Alternative Method :
Given : 1+cos2x+cos4x+cos6x1 + \cos 2x + \cos 4x + \cos 6x
Now , this time taking the terms cos6x\cos 6x and cos2x\cos 2x together and applying the formula cosA+cosB=2cosA+B2cosAB2\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} , again we get
=1+cos4x+2cos(6x2x2)cos(6x+2x2)= 1 + \cos 4x + 2\cos (\dfrac{{6x - 2x}}{2})\cos (\dfrac{{6x + 2x}}{2}) , on solving we get ,
=1+cos4x+2cos2xcos4x= 1 + \cos 4x + 2\cos 2x\cos 4x
Now using the formula cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1 we get ,
=2cos22x+2cos2xcos4x= 2{\cos ^2}2x + 2\cos 2x\cos 4x, now taking the 2cos2x2\cos 2x common we get
=2cos2x(cos2x+cos4x)= 2\cos 2x(\cos 2x + \cos 4x)
Now again applying the formula cosA+cosB=2cosA+B2cosAB2\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} we get ,
=2cos2x[2cos(4x2x2)cos(4x+2x2)]= 2\cos 2x\left[ {2\cos (\dfrac{{4x - 2x}}{2})\cos (\dfrac{{4x + 2x}}{2})} \right] on solving further we get ,
=2cos2x[2cosxcos3x]= 2\cos 2x\left[ {2\cos x\cos 3x} \right], on simplifying we get
=4cosxcos2xcos3x= 4\cos x\cos 2x\cos 3x .