Solveeit Logo

Question

Question: Solution set of inequality $\sin^3 x \cos x > \cos^3 x \sin x$, where $x \in (0, \pi)$, is...

Solution set of inequality sin3xcosx>cos3xsinx\sin^3 x \cos x > \cos^3 x \sin x, where x(0,π)x \in (0, \pi), is

A

(π4,π2)\left(\frac{\pi}{4}, \frac{\pi}{2}\right)

B

(3π4,π)\left(\frac{3\pi}{4}, \pi\right)

C

(0,π4)\left(0, \frac{\pi}{4}\right)

D

(π2,3π4)\left(\frac{\pi}{2}, \frac{3\pi}{4}\right)

Answer

(A) (π4,π2)\left(\frac{\pi}{4}, \frac{\pi}{2}\right) (B) (3π4,π)\left(\frac{3\pi}{4}, \pi\right)

Explanation

Solution

To solve the inequality sin3xcosx>cos3xsinx\sin^3 x \cos x > \cos^3 x \sin x for x(0,π)x \in (0, \pi), we proceed as follows:

  1. Rearrange the inequality: sin3xcosxcos3xsinx>0\sin^3 x \cos x - \cos^3 x \sin x > 0

  2. Factor out common terms: sinxcosx(sin2xcos2x)>0\sin x \cos x (\sin^2 x - \cos^2 x) > 0

  3. Apply trigonometric identities: We know that sinxcosx=12sin(2x)\sin x \cos x = \frac{1}{2} \sin(2x) and sin2xcos2x=(cos2xsin2x)=cos(2x)\sin^2 x - \cos^2 x = -(\cos^2 x - \sin^2 x) = -\cos(2x). Substitute these into the inequality: (12sin(2x))(cos(2x))>0\left(\frac{1}{2} \sin(2x)\right) (-\cos(2x)) > 0 12sin(2x)cos(2x)>0-\frac{1}{2} \sin(2x) \cos(2x) > 0

  4. Simplify further using double angle identity: We know that sin(2A)cos(2A)=12sin(4A)\sin(2A) \cos(2A) = \frac{1}{2} \sin(4A). Let A=xA = x. So, sin(2x)cos(2x)=12sin(4x)\sin(2x) \cos(2x) = \frac{1}{2} \sin(4x). Substitute this back: 12(12sin(4x))>0-\frac{1}{2} \left(\frac{1}{2} \sin(4x)\right) > 0 14sin(4x)>0-\frac{1}{4} \sin(4x) > 0

  5. Isolate sin(4x)\sin(4x): Multiply by -4 (and reverse the inequality sign): sin(4x)<0\sin(4x) < 0

  6. Determine the range for 4x4x: The given domain for xx is (0,π)(0, \pi). Therefore, the domain for 4x4x is (4×0,4×π)(4 \times 0, 4 \times \pi), which is (0,4π)(0, 4\pi).

  7. Find intervals where sin(4x)<0\sin(4x) < 0 within (0,4π)(0, 4\pi): The sine function is negative in the third and fourth quadrants. For y(0,4π)y \in (0, 4\pi), sin(y)<0\sin(y) < 0 when:

    • y(π,2π)y \in (\pi, 2\pi)
    • y(3π,4π)y \in (3\pi, 4\pi)
  8. Substitute back y=4xy = 4x and solve for xx: Case 1: π<4x<2π\pi < 4x < 2\pi Divide by 4: π4<x<2π4\frac{\pi}{4} < x < \frac{2\pi}{4} π4<x<π2\frac{\pi}{4} < x < \frac{\pi}{2}

    Case 2: 3π<4x<4π3\pi < 4x < 4\pi Divide by 4: 3π4<x<4π4\frac{3\pi}{4} < x < \frac{4\pi}{4} 3π4<x<π\frac{3\pi}{4} < x < \pi

  9. Combine the solutions: The solution set for x(0,π)x \in (0, \pi) is the union of these two intervals: x(π4,π2)(3π4,π)x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{4}, \pi\right).

Thus, the solution set is (π4,π2)(3π4,π)\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{4}, \pi\right). Both options (A) and (B) represent parts of this solution.