Solveeit Logo

Question

Question: Solution of \(y(2xy + e^{x})dx = e^{x}dy\) is...

Solution of y(2xy+ex)dx=exdyy(2xy + e^{x})dx = e^{x}dy is

A

yx2+ex=cyyx^{2} + e^{x} = cy

B

xy2+ex=cxxy^{2} + e^{x} = cx

C

xy2+ex=cxy^{2} + e^{- x} = c

D

None of these

Answer

yx2+ex=cyyx^{2} + e^{x} = cy

Explanation

Solution

Re-writing the given equation,

2xy2dx+yexdx=exdy2xdx+yexdxexdyy2=02xy^{2}dx + ye^{x}dx = e^{x}dy \Rightarrow 2xdx + \frac{ye^{x}dx - e^{x}dy}{y^{2}} = 0

d(x2)+d(exy)=0d(x^{2}) + d\left( \frac{e^{x}}{y} \right) = 0

Integrating, x2+exy=cx^{2} + \frac{e^{x}}{y} = c

yx2+ex=cyyx^{2} + e^{x} = cy