Solveeit Logo

Question

Question: Solution of the inequation \(\log_{0.1}\left( \log_{2}\frac{x^{2} + 1}{|x - 1|} \right)\)\< 0 conta...

Solution of the inequation

log0.1(log2x2+1x1)\log_{0.1}\left( \log_{2}\frac{x^{2} + 1}{|x - 1|} \right)< 0 contains the interval

A

(1, ¥)

B

(–¥, 1)

C

[1, ¥)

D

None of these

Answer

(1, ¥)

Explanation

Solution

log2 (x2+1x1)\left( \frac{x^{2} + 1}{|x - 1|} \right) > 1̃x2+1x1\frac{x^{2} + 1}{|x - 1|} > 2

If x > 1 x2 + 1 > 2 |x – 1|

x2 + 1 – 2x + 2 > 0 " xÎR

If x < 1 x2 + 1 > 2 – 2x

x2 + 2x + 1 > 2

̃x + 1 >2> \sqrt{2} ̃ x >2\sqrt{2}– 1 and x +1<–2\sqrt{2}

̃ x < – 1 – 2\sqrt{2}

thus**,** xÎ (– ¥, –1 –2\sqrt{2}) È (21,1)(\sqrt{2} - 1,1) È (1, ¥)