Solveeit Logo

Question

Question: Solution of the inequality \(\left( \frac{1}{3} \right)^{\frac{|x + 2|}{2 - |x|}}\)\> 9 :...

Solution of the inequality (13)x+22x\left( \frac{1}{3} \right)^{\frac{|x + 2|}{2 - |x|}}> 9 :

A

(0, 2)

B

(2, 4)

C

(2, 6)

D

(4, 6)

Answer

(2, 6)

Explanation

Solution

3x+22x3^{- \frac{|x + 2|}{2 - |x|}} > 32

x+22x\frac{- |x + 2|}{2 - |x|} > 2 ⇒ x+22x\frac{|x + 2|}{2 - |x|} < – 2

Case I : x<2\underline{x < - 2}(x+2)2+x\frac{- (x + 2)}{2 + x}< – 2 ⇒ – 1 < – 2

which is not true

Case II : – 2 < x < 0 ⇒ x+22+x\frac{x + 2}{2 + x} < – 2⇒ 1 < – 2

which is not true

Case III : x ≥ 0 ⇒ x+22x\frac{x + 2}{2 - x} < – 2, or x+22x\frac{x + 2}{2 - x} + 2 < 0

x+2+42x2x\frac{x + 2 + 4 - 2x}{2 - x}< 0 or (6x)(2x)(2x)2\frac{(6 - x)(2 - x)}{(2 - x)^{2}}< 0

⇒ (x – 2) (x – 6) < 0 ⇒ 2<x<6\underline{2 < x < 6}.