Solveeit Logo

Question

Question: Solution of the equation\(9^{x} - 2^{x + \frac{1}{2}} = 2^{x + \frac{3}{2}} - 3^{2x - 1}\)...

Solution of the equation9x2x+12=2x+3232x19^{x} - 2^{x + \frac{1}{2}} = 2^{x + \frac{3}{2}} - 3^{2x - 1}

A

log9(9/8)\log_{9}(9/\sqrt{8})

B

log(9/2)(9/8)\log_{(9/2)}(9/\sqrt{8})

C

loge(9/8)\log_{e}(9/\sqrt{8})

D

None of these

Answer

log(9/2)(9/8)\log_{(9/2)}(9/\sqrt{8})

Explanation

Solution

9x2x+(1/2)=2x+(3/2)32x19^{x} - 2^{x + (1/2)} = 2^{x + (3/2)} - 3^{2x - 1}

32x+13.32x=2.2x+12+2x+1223^{2x} + \frac{1}{3}.3^{2x} = 2.2^{x + \frac{1}{2}} + 2^{x + \frac{1}{2} - 2}

4.32x1=3.2x+124.3^{2x - 1} = 3.2^{x + \frac{1}{2}}32x2=2x+1223^{2x - 2} = 2^{x + \frac{1}{2} - 2}

32x2=2x323^{2x - 2} = 2^{x - \frac{3}{2}}(92)x1=21/2\left( \frac{9}{2} \right)^{x - 1} = 2^{- 1/2}

(x1)log9/29/2=12log9/22(x - 1)\log_{9/2}9/2 = - \frac{1}{2}\log_{9/2}2

x1=12log9/22x - 1 = - \frac{1}{2}\log_{9/2}2

x=1log9/22=log9/29/2log9/22x = 1 - \log_{9/2}\sqrt{2} = \log_{9/2}9/2 - \log_{9/2}\sqrt{2}

x=log9/2(9/22)x = \log_{9/2}(9/2\sqrt{2}); \therefore x=log9/2(9/8)x = \log_{9/2}(9/\sqrt{8}).