Solveeit Logo

Question

Question: Solution of the equation x<sup>3</sup>\(\frac{dy}{dx}\) + 4x<sup>2</sup> tan y = e<sup>x</sup> sec y...

Solution of the equation x3dydx\frac{dy}{dx} + 4x2 tan y = ex sec y when y(1) = 0 is

A

sin y = ex (x –1)x–4

B

sin y = ex (x –1)x–3

C

tan y = ex (x –1)x–3

D

tan y = ex (x –2)log x

Answer

sin y = ex (x –1)x–4

Explanation

Solution

Given equation is x4 cosy×dydx\frac{dy}{dx} + 4x3 sin y = x.ex

ddx\frac{d}{dx} (x4 siny) = x×ex x4×sin y = ∫ x×ex dx

x4 siny = (x – 1) ex + C

in y (1) = 0, x = 1, y = 0 so C = 0

So sol. is siny = x–4 (x – 1) ex