Solveeit Logo

Question

Question: Solution of the equation x<sup>2</sup>y – x<sup>3</sup>\(\frac{dy}{dx}\) = y<sup>4</sup>cos x, when ...

Solution of the equation x2y – x3dydx\frac{dy}{dx} = y4cos x, when y (0) = 1, is –

A

y3 = 3x3 sin x

B

x3 = 3y3 sin x

C

x3 = y3 sin x

D

None of these

Answer

x3 = 3y3 sin x

Explanation

Solution

We have, x2y – x3 dydx\frac{dy}{dx} = y4 cos x

Ž x3dydx\frac{dy}{dx} – x2y = –y4 cos x

Dividing by –y4 x3, we get

1y4\frac{1}{y^{4}} dydx\frac{dy}{dx} + 1y3\frac{1}{y^{3}} . 1x\frac{1}{x} = 1x3\frac{1}{x^{3}} cos x

On putting 1y3\frac{1}{y^{3}} = V so that – 1y4\frac { 1 } { y ^ { 4 } } dydx\frac{dy}{dx} = 13\frac { 1 } { 3 } dvdx\frac{dv}{dx}, we get

13\frac{1}{3} dVdx\frac{dV}{dx} + 1x\frac{1}{x}V = 1x3\frac{1}{x^{3}} cos x

Ž dVdx\frac{dV}{dx} + 3x\frac{3}{x}V = 3x3\frac{3}{x^{3}}cos x.

which is linear in V.

I. F. = e3xdxe^{\int_{}^{}{\frac{3}{x}dx}} = e3 log x = x3.

So the solution is

x3V = x3\int_{}^{}x^{3} . 3x3\frac{3}{x^{3}} cos x dx + c = 3 sin x + c.

Ž x3y3\frac{x^{3}}{y^{3}} = 3 sin x + c.

On putting x = 0, y = 1, we get c = 0.

Hence the solution is x3 = 3y3 sin x