Solveeit Logo

Question

Question: Solution of the equation xdy – [y + xy<sup>3</sup> (1 + log x)] dx = 0 is –...

Solution of the equation xdy – [y + xy3 (1 + log x)] dx = 0 is –

A

x2y2\frac{- x^{2}}{y^{2}}= (23+logx)\left( \frac{2}{3} + \log x \right) + C

B

x2y2\frac{x^{2}}{y^{2}}= (23+logx)\left( \frac{2}{3} + \log x \right) + C

C

x2y2\frac{- x^{2}}{y^{2}}= (23+logx)\left( \frac{2}{3} + \log x \right) + C

D

None of these

Answer

x2y2\frac{- x^{2}}{y^{2}}= (23+logx)\left( \frac{2}{3} + \log x \right) + C

Explanation

Solution

We have,

x dy – y dx = xy3 (1 + log x) dx

Ž – (ydxxdyy2)\left( \frac{ydx - xdy}{y^{2}} \right) = xy (1 + log x) dx

Ž – d (xy)\left( \frac{x}{y} \right) = xy (1 + log x) dx

Ž – xy\frac{x}{y} d(xy)\left( \frac{x}{y} \right) = x2 (1 + log x) dx

Integrating, we get

(xy)22\frac{\left( \frac{x}{y} \right)^{2}}{2}= (1 + log x) x33\frac{x^{3}}{3}x33\int_{}^{}\frac{x^{3}}{3}.1x\frac{1}{x} dx

Ž – x22y2\frac{x^{2}}{2y^{2}} = x33\frac{x^{3}}{3} (1 + log x) – x39\frac{x^{3}}{9} + C2\frac{C}{2}

Ž – x2y2\frac{x^{2}}{y^{2}} = (23+logx)\left( \frac{2}{3} + \log x \right) + C