Solveeit Logo

Question

Question: Solution of the equation Xdy = \(\left( y + x\frac{ƒ(y/x)}{ƒ'(y/x)} \right)\)dx is –...

Solution of the equation Xdy = (y+xƒ(y/x)ƒ(y/x))\left( y + x\frac{ƒ(y/x)}{ƒ'(y/x)} \right)dx is –

A

ƒ(xy)ƒ\left( \frac{x}{y} \right)= cy

B

ƒ(yx)ƒ\left( \frac{y}{x} \right)= cx

C

ƒ(yx)ƒ\left( \frac{y}{x} \right) = cxy

D

None of these

Answer

ƒ(yx)ƒ\left( \frac{y}{x} \right)= cx

Explanation

Solution

We have, x dy = (y+xƒ(y/x)ƒ(y/x))\left( y + \frac{xƒ(y/x)}{ƒ'(y/x)} \right)dx

Ž dydx\frac{dy}{dx} =yx\frac{y}{x} + ƒ(y/x)ƒ(y/x)\frac{ƒ(y/x)}{ƒ'(y/x)} which is homogeneous.

Put y = Vx Ž dydx\frac{dy}{dx} = V + x dVdx\frac{dV}{dx},

We obtain

V + x dVdx\frac{dV}{dx} = V + ƒ(V)ƒ(V)\frac{ƒ(V)}{ƒ'(V)} d V

Ž ƒ(V)ƒ(V)\frac{ƒ'(V)}{ƒ(V)} dV = dxx\frac{dx}{x}

Integrating, we get

Ž log ƒ (V) = log cx Ž ƒ(yx)\left( \frac{y}{x} \right) = cx.

Hence (2) is the correct answer